EE321 Third Homework Assignment

@ Kefu Xue, Ph.D., June 2005-July 2007

1 Laplace Transform

1. Find the Laplace transforms of the following functions: (either using direct integration or using convolution, time-shifting, and other properties with transform table)
(a) $f_{1}(t)=\left(2+e^{-2 t}\right) \cdot u(t-2)$
(b) $f_{2}(t)=(t-2)^{2} \cdot \delta(t)$
(c) $f_{3}(t)=2 u(t) * 3 e^{-3 t} u(t)$
(d) $f_{4}(t)=2[u(t-1)-u(t-4)]$
(e) $f_{5}(t)=t u(t-1)$
2. Find Laplace Transform and the region of convergence using direct integration:
(a) $x_{1}(t)=u(t)-u(t-3)$
(b) $x_{2}(t)=\left(e^{-3 t}-3 e^{-t}\right) u(t)$
(c) $x_{3}(t)=e^{-3 t} \cos (20 t+2) u(t)$
3. Initial and final value theorem: Determine the initial and final values of the signals whose Laplace transforms are given. If the final values are not defined, state why.
(a) $F_{1}(s)=\frac{2}{s^{3}+s}$
(b) $F_{2}(s)=\frac{5 s}{s^{2}+2 s+5}$
(c) $F_{3}(s)=\frac{3 s^{2}+4 s+2}{s^{3}+2 s^{2}+s+2}$
(d) $F_{4}(s)=\frac{3}{s^{2}-s}$
4. Find the inverse Laplace transforms of the following functions:
(a) $F_{1}(s)=\frac{s+3}{s\left(s^{2}+9 s+14\right)}$
(b) $F_{2}(s)=\frac{(s+3) e^{-2 s}}{\left(s^{2}-2 s-3\right)}$
(c) $F_{3}(s)=\frac{s+2 e^{-s}}{s^{2}+2 s+5}$
(d) $F_{4}(s)=\frac{s+1}{(s+2)^{2}\left(s^{2}+4 s+5\right)}$
5. Solving differential equations:
(a) A LTI system is described by the following differential equation.

$$
\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+6 y(t)=2 \frac{d x(t)}{d t}+x(t)
$$

with the initial conditions: $y(0)=2, \dot{y}(0)=-1$. i) Find transfer function $H(s)$ by observation; ii) Find the zero input response using Laplace transform; iii) Find the zero state response to $10 u(t)$ using Laplace transform; iv) Find the total response of the system to the signal $10 u(t)$.
(b) The transfer function of a LTI system is given as

$$
H(s)=\frac{s+2}{s^{2}+4 s+5}
$$

and its output initial condition is $y(0)=1, \dot{y}(0)=-2$. i) Find the zero input response using Laplace transform; ii) Find the zero state response to input signal $2 e^{-2 t} u(t)$ using Laplace transform; iii) What is the total response.
(c) Given a circuits where the switch is in an opened position for a long time before $t=0$ when it is closed instantaneously. Find the total response of $y(t)$ for $t \geq 0$.

Figure 1:
6. Text book problems: 6.4-9 and 6.4-10.

