EE321 Fifth Homework Assignment

@ Kefu Xue, Ph.D., Sep. 2001

1 Measure the Similarity and Orthogonality of Signals

- 1. For the following pairs of signals, x(t) and f(t) for $t_0 \le t \le t_1$, find parameter c such that x(t) = cf(t) with minimum error energy. Also calculate the energy of the error e(t) = x(t) cf(t).
 - (a) signals

(b) signals

(c) signals

and $f(t) = \sin(0.2\pi t)$ for $0 \le t \le 10$. Work out another case with $f(t) = \cos(0.2\pi t)$ for $0 \le t \le 10$. Verify your results using Matlab.

- 2. Show that if the following pairs of periodic signals, x(t) and f(t) are orthogonal or not.
 - (a) $x(t) = \cos(\omega_0 t)$ and $f(t) = \sin(\omega_0 t)$
 - (b) $x(t) = e^{j\omega_0 t}$ and $f(t) = e^{jn\omega_0 t}$ where $n \neq 1$
 - (c) $x(t) = \cos(\omega_0 t)$ and $f(t) = 2\cos(\omega_0 t 1)$

2 Fourier Series Representation of Periodic Signals

3. Find Exponential Fourier Series Representation of the following signals.

(a) signal

(d) signal

- (e) signal $x(t) = 2\cos(200\pi t) 3\cos(160\pi t 1.2) + 2 \sin(80\pi t)$, sketch the magnitude and phase Fourier series spectra and verify the result with Matlab fft() function.
- (f) signal $x(t) = 1 + 2\cos(20\pi t) 3\cos(16\pi t 1) \sin(8t)$
- (g) signal $x(t) = \cos(27t) + 2\sin(6t 1.2) 3\sin(18t)$, sketch the magnitude and phase Fourier series spectra and verify the result with Matlab fft() function.
- 4. Given the following sets of exponential Fourier coefficients of real signals, find the signal expression in time domain and plot the signals in Matlab.
 - (a) $\omega_0 = 10 \text{ rad./sec.}, D_0 = 2, D_2 = 2j, D_{-5} = 1 + j$
 - (b) $\omega_0 = 6\pi \text{ rad./sec.}, D_{-1} = 2, D_3 = 0.5e^{-j}, D_5 = 0.3 + 0.1j, D_{-7} = -0.1$
- 5. For the 4 graphical signals in problem 3, if only first 11 $(D_{-5}, D_{-4}, \dots, D_0, D_1, \dots, D_5)$ Fourier series coefficients are used in their Fourier series representations, what are the mean square errors of the reduced Fourier series representations with respect to their original signal representations? (Hint: using Parseval's theorem) Plot all 4 synthesized signals using only the first 11 of their corresponding Fourier series coefficients in Matlab.
- 6. Given a full-wave rectified signal $x(t) = |12\cos(400\pi t)|$, find its exponential Fourier series representation. Determine the number N such that the first 2N + 1 (from D_{-N} to D_N) Fourier series coefficients cover more than 99.75% of the signal power.
- 7. Extra exercise problems in the text book: