EE321 Sixth Homework Assignment

@ Kefu Xue, Ph.D., Sep. 2001 to Aug. 2007

1 Fourier Transforms

1. Find Fourier transforms of the following functions
(a) $f_{1}(t)=3 e^{-3 t} u(t-2)$
(b) $f_{2}(t)=e^{-2 t}[u(t)-u(t-2)]$
(c) $f_{3}(t)=2 \operatorname{rect}\left(\frac{t-5}{2}\right)$
(d) $f_{4}(t)=\operatorname{rect}\left(\frac{t+1}{2}\right)+\operatorname{rect}\left(\frac{t-1}{2}\right)$
(e) $f_{5}(t)=f_{4}(2 t)$
(f) $f_{6}(t)=2 \sin c(4 \pi t)$
(g) $f_{7}(t)=f_{2}(t-2)$
(h) Given Fourier transforms of $\delta(t)$ is 1 , use Fourier transforms duality and frequency shift properties to prove that Fourier transform of $e^{j \omega_{0} t}$ is $2 \pi \delta\left(\omega-\omega_{0}\right)$.
(i) $f_{8}(t)=\operatorname{rect}\left(\frac{t}{T}\right) \cos \left(\omega_{0} t\right)$
(j) $f_{9}(t)=t[u(t-1)-u(t-5)]$
2. Find inverse Fourier transform of the following functions:
(a) $F_{1}(\omega)=\operatorname{rect}\left(\frac{2 \omega-6 \pi}{4}\right)$
(b) $F_{2}(\omega)=3 e^{-2 a|\omega|}$
(c) $F_{3}(\omega)=4 \cos (\tau \omega)$
(d) $F_{4}(\omega)=3 \sin c(5 \omega)$
3. Sketch the following functions:
(a) $f(t)=2 \cdot \operatorname{sinc}\left(\frac{2 \pi t-2}{6 \pi}\right)$
(b) $F(\omega)=\operatorname{rect}\left(\frac{2 \omega-6 \pi}{4}\right)$
4. A system transfer function is $H(s)=s^{2}+5 s+4$ and input signal is $x(t)=2 \cos (20 \pi t)$ using the convolution property of the Fourier transform to
(a) find the Fourier transform of the output signal $y(t)$, and
(b) Sketch the magnitude and phase spectrum. (hint: $F(\omega) \cdot \delta\left(\omega-\omega_{0}\right)=F\left(\omega_{0}\right)$. $\left.\delta\left(\omega-\omega_{0}\right)\right)$
(c) Can you tell the steady state response $y_{s s}(t)$ from the above answers and what is it?
5. Given Fourier transform of a continuous-time signal $x(t)$ is

$$
X(j \omega)=\frac{A}{j \omega+p}
$$

find Fourier transforms of
(a) $f(t)=3 x(2 t-4)$
(b) $y(t)=\frac{d^{2} x(t)}{d t^{2}}$
(c) $w(t)=t^{2} x(t)$
(d) $v(t)=x(t) \cos (3 t)$
(e) $q(t)=x(t) * x(t)$ where $*$ is linear convolution
6. Find the Fourier transform of the following periodic signaland show that it is equivalent

Figure 1:
to the Fourier series coefficients D_{n}.
7. Extra exercise problems in the text book: 4.6-1 and 4.6-5

