EE322 Second Homework Problems

Instructor: Kefu Xue, Ph. D., Dept. of EE, WSU

@Mar. 2000 to June 2007

1. A LTI system is described by the following impulse response

$$
h(n)=2^{-n} \quad \text { for } n=-2,-1, \cdots, 3,4
$$

For a given input signal

$$
\left\{\begin{array}{rr|r|r|r|}
\hline x(n)= & 1 & -1 & 1 & 2 \\
\hline n= & 3 & 4 & 5 & 6 \\
\hline
\end{array}\right\}
$$

answer the following questions.
(a) Find the difference equation representation of the filter and system transfer function $B(z)$.
(b) What is the length of the zero-state response sequence $y(n)$?
(c) What are the beginning and ending indices of the zero-state response $y(n)$?
(d) Find some of the values of the zero-state response sequence

$$
y(-2), y(0), y(4), y(8), y(11)
$$ using the linear convolution sum.

(e) Verify your result using Matlab ${ }^{T M}$ function $\operatorname{conv}()$.
2. The unit impulse response of a linear system is $h(n)=\left[\begin{array}{ll}-12-1\end{array}\right]$ for $n=0,1,2$. The input signal $x(n)=$ $n^{2} \cdot[u(n+1)-u(n-4)]$, use the linear convolution sum to find the zero-state output signal $y(n)$.
(a) Find start index, S_{y}, ending index, E_{y} and length, L_{y} of the output signal.
(b) Show the linear convolution calculation and list the output signal $y(n)$ in a table with correct time index.
3. A digital filter is described by the following difference equation

$$
y(n)-0.9 y(n-1)=x(n)+x(n-1)
$$

(a) Find the polynomials, $A(z)$ and $B(z)$, and the transfer function $H(z)$.
(b) Given the initial condition $y(2)=1$, find first 4 output values of the filter to the input signal $x(n)=$ $0.5^{n} u(n-1)$ using the difference equation iteratively.
4. A digital filter has the following transfer function

$$
H(z)=\frac{1.1-z^{-1}}{1+0.9 z^{-2}}
$$

(a) Find the expression of difference equation.
(b) Find the first 4 output values of the filter to the input signal $x(n)=u(n-1)$ iteratively with initial conditions: $y(1)=0.5$ and $y(0)=0$.
5. Given the difference equation of a digital filter

$$
y(n)=x(n)+2 x(n-1)+x(n-1)
$$

find its unit impulse response sequence, $h(n)$, and transfer function, $H(z)$. Any conclusion?
6. A linear time-invariant continuous-time integrator is described by the following differential equation.

$$
y_{a}(t)=\frac{d^{2} x_{a}(t)}{d t^{2}}-5 \frac{d x_{a}(t)}{d t}+x_{a}(t)
$$

Find the corresponding difference equation with input $x(n)$, output $y(n)$ and $B(z)$ using the approximation,

$$
\frac{d x_{a}(t)}{d t} \approx \frac{x_{a}(n T)-x_{a}(n T-T)}{T}=\frac{x(n)-x(n-1)}{T} .
$$

Hint: $\frac{d^{2} x_{a}(t)}{d t^{2}}=\frac{d}{d t}\left\{\frac{d x_{a}(t)}{d t}\right\}$
7. Consider the following 4 signals:

$$
\begin{aligned}
w_{a}(t) & =\cos (2 \pi t)[u(t)-u(t-1)] \\
x_{a}(t) & =\sin (2 \pi t)[u(t)-u(t-1)] \\
y_{a}(t) & =2 t \cdot[u(t)-u(t-1)] \\
z_{a}(t) & =2(1-t) \cdot[u(t)-u(t-1)]
\end{aligned}
$$

(a) Find the Energy $\left(\gamma_{x x}(0)\right)$ of each signal.
(b) Calculate $\gamma_{x y}(0), \gamma_{x z}(0), \gamma_{w y}(0)$, and $\gamma_{w z}(0)$ using integral and explain the implications of the calculation results.
(c) Verify the above results using Matlab (The functions may be involved: sum(), .*, .^). (using $T=0.001 \mathrm{~s})$
(d) Using Matlab statement: fgamaxz=fliplr($\operatorname{conv(fliplr(xa),~za));~to~calculate~the~correlation~functions:~}$ $\gamma_{x y}(k), \gamma_{x z}(k), \gamma_{w y}(k)$, and $\gamma_{w z}(k)$. Plot and interpret the correlation functions. (Matlab function may be involved: [maxv,maxi]=max(fgamaxz);)

