Supplemental notes I

Instructor: Kefu Xue, Ph. D., Dept. of EE, WSU

@Mar. 2000 to June 2007

Sampling and discrete-time signals:

For every signal, there exists a Nyquist frequency $f_{N}=2 f_{B}$ where f_{B} (bandwidth) is the highest frequency component in a signal $x_{a}(t)$ which has significant energy. The sampling frequency $f_{s}>f_{N}$ to avoid aliasing error. $x(n)=\left.x_{a}(t)\right|_{t=n T}$, where $T=\frac{1}{f_{s}}$ is the sampling interval. Typical discrete-time signals $u(n), \delta(n)$,

$$
u(n)=\left\{\begin{array}{l}
1, \text { for } n \geq 0 \\
0, \text { for } n<0
\end{array}=\sum_{k=-\infty}^{n} \delta(k), \quad \delta(n)=\left\{\begin{array}{l}
1, \text { for } n=0 \\
0, \text { otherwise }
\end{array}=u(n)-u(n-1)\right.\right.
$$

and

$$
e^{j \omega_{0} T n}=e^{j \hat{\omega}_{0} n}=e^{j \frac{2 \pi l}{N} n}=\cos \left(\frac{2 \pi l}{N} n\right)+j \sin \left(\frac{2 \pi l}{N} n\right)
$$

where N is the period of the complex exponential signal and $\hat{\omega}_{0}=\omega_{0} T=\frac{2 \pi l}{N}$ is the normalized frequency in radian. $e^{j \hat{\omega}_{0} n}$ is periodic, only if $\frac{l}{N}$ is rational, that is, l and N are both integers.

Fourier series:

For any periodic signal $x_{a}(t)$ with period T_{0}, the Fourier series representation of the signal is

$$
\begin{equation*}
x_{a}(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j \omega_{0} k t} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{k}=\frac{1}{T_{0}} \int_{T_{0}} x_{a}(t) e^{-j \omega_{0} k t} d t \tag{2}
\end{equation*}
$$

where $\omega_{0}=\frac{2 \pi}{T_{0}}$. A periodic signal can be expressed as a linear combination of sinusoids with frequencies of $k \omega_{0}$. Therefore, the ratio of any two frequency components in a periodic signal must be a rational number,

$$
\frac{\omega_{1}}{\omega_{2}}=\frac{l \omega_{0}}{m \omega_{0}}=\frac{l}{m}
$$

and its period is $T_{0}=\frac{2 \pi}{\omega_{0}}$ where ω_{0} is a common factor of the frequency components $\omega_{1}, \omega_{2}, \omega_{3}, \cdots$.
Example 1 An analog signal $x_{a}(t)=3 \cos (300 \pi t+2)+2 \cos (450 \pi t)$ is periodic, since

$$
\frac{\omega_{1}}{\omega_{2}}=\frac{300 \pi}{450 \pi}=\frac{2 \times 150 \pi}{3 \times 150 \pi} \text { or } \frac{6 \times 50 \pi}{9 \times 50 \pi}
$$

and the period is either $T_{0}=\frac{2 \pi}{\omega_{0}}=\frac{1}{75}$ or $\frac{1}{25}$ second and $\omega_{0}=150 \pi$ or 50π respectively.
Example 2 The bandwidth of $x_{a}(t)=3 \cos (300 \pi t+2)+2 \cos (450 \pi t)$ is $f_{B}=225 \mathrm{~Hz}$. Therefore, the Nyquist frequency of the signal is $f_{N}=2 f_{B}=450 \mathrm{~Hz}$. To satisfy sampling theory, we select a sampling frequency of $f_{s}=500$ $H z$ that is greater than f_{N}.

$$
\begin{aligned}
x(n) & =\left.x_{a}(t)\right|_{t=n T}=3 \cos \left(\frac{300 \pi n}{500}+2\right)+2 \cos \left(\frac{450 \pi n}{500}\right) \\
& =3 \cos \left(\frac{6 * 2 \pi n}{20}+2\right)+2 \cos \left(\frac{9 * 2 \pi n}{20}\right)
\end{aligned}
$$

where the normalized frequencies $\hat{\omega}_{1}=\omega_{1} T=\frac{l_{1} 2 \pi}{N}$ and $\hat{\omega}_{2}=\omega_{2} T=\frac{l_{2} 2 \pi}{N}$. The signal is periodic and the period is $N=20$ samples. One period (20 samples) of the digital signal covers 6 (l_{1}) period of frequency component of 300π (rad. $/ \mathrm{sec}$.) and $9\left(l_{2}\right)$ period of frequency component of 450π (rad. $/ \mathrm{sec}$.). The 20 sample period of the discrete-time signal is equivalent to $20 T=\frac{1}{25}$ second.

Discrete Fourier series (DFS) of a periodic signal:

A periodic signal can be expressed by a linear combination of sinusoids (1). Sampling of sinusoids in the linear combination generates a set of normalized frequency components, such as, $\hat{\omega}_{1}, \hat{\omega}_{2}, \hat{\omega}_{3}, \cdots$. The frequency components can be expressed as $\hat{\omega}_{1}=\frac{l_{1} 2 \pi}{N}, \hat{\omega}_{2}=\frac{l_{2} 2 \pi}{N}, \hat{\omega}_{3}=\frac{l_{3} 2 \pi}{N}, \cdots$, where N is the period. The fundamental frequency is $\hat{\omega}_{0}=\frac{2 \pi}{N}$. If a period of the sampled discrete-time signal $x(n)$ is used for Fourier series analysis, the equations (1) and (2) yield

$$
\begin{align*}
x(n) & =x_{a}(n T)=\sum_{k=0}^{N-1} X_{k} e^{j \omega_{0} k n T} \tag{3}\\
& =\sum_{k=0}^{N-1} X_{k} e^{j \hat{\omega}_{0} k n}=\sum_{k=0}^{N-1} X_{k} e^{j \frac{2 \pi}{N} k n}, \quad n=0,1, \cdots, N-1
\end{align*}
$$

and

$$
\begin{align*}
X_{k} & =\frac{1}{T_{0}} \int_{T_{0}} x_{a}(n T) e^{-j \omega_{0} k n T} T \tag{4}\\
& =\frac{1}{N T} \sum_{n=0}^{N-1} x_{a}(n T) e^{-j \omega_{0} k n T} T \\
& =\frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j \frac{2 \pi}{N} k n}, \quad k=0,1, \cdots, N-1
\end{align*}
$$

respectively. The convention used in Matlab ${ }^{T M}$ and other text book is as follows.

$$
\begin{equation*}
\text { DFS: } X(k)=X_{k} \cdot N=\sum_{n=0}^{N-1} x(n) e^{-j \frac{2 \pi}{N} k n}, \quad k=0,1, \cdots, N-1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { IDFS: } x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j \frac{2 \pi}{N} k n}, \quad n=0,1, \cdots, N-1 . \tag{6}
\end{equation*}
$$

There are three important properties of DFS:
Priodicity: $X(k)=X(k \pm N)$ and $x(n)=x(n \pm N)$
Symmetry: $X(k)=X^{*}(N-k)$, if $x(n)$ is a real valued signal.
Example 3 Consider a periodic signal

$$
\begin{aligned}
x_{a}(t) & =10+14 \cos \left(200 \pi t-\frac{\pi}{3}\right)+8 \sin (500 \pi t+\pi) \\
& =10+14 \frac{e^{j\left(200 \pi t-\frac{\pi}{3}\right)}+e^{-j\left(200 \pi t-\frac{\pi}{3}\right)}}{2}+8 \frac{e^{j(500 \pi t+\pi)}-e^{-j(500 \pi t+\pi)}}{2 j} \\
& =10+7 e^{-j \frac{\pi}{3}} \cdot e^{j 200 \pi t}+7 e^{j \frac{\pi}{3}} \cdot e^{-j 200 \pi t}+4 e^{-j \frac{\pi}{2}}\left(e^{j \pi} \cdot e^{j 500 \pi t}+e^{-j 500 \pi t}\right) \\
& =10+7 e^{-j \frac{\pi}{3}} \cdot e^{j 200 \pi t}+7 e^{j \frac{\pi}{3}} \cdot e^{-j 200 \pi t}+4 e^{j \frac{\pi}{2}} \cdot e^{j 500 \pi}+4 e^{-j \frac{\pi}{2}} \cdot e^{-j 500 \pi} .
\end{aligned}
$$

We can find the Fourier series coefficients X_{k} and ω_{0} by using series recognition method.

$$
\frac{\omega_{1}}{\omega_{2}}=\frac{200 \pi}{500 \pi}=\frac{2 \times 100 \pi}{5 \times 100 \pi}, \quad \omega_{0}=100 \pi
$$

and

$$
X_{0}=10 ; \quad X_{2}=X_{-2}^{*}=7 e^{-j \frac{\pi}{3}} ; \quad X_{5}=X_{-5}^{*}=4 e^{j \frac{\pi}{2}}
$$

Since the Nyquist frequency of the signal is $f_{N}=500 \mathrm{~Hz}$, the $f_{s}=600 \mathrm{~Hz}$ is selected. Therefore, the normalized frequency components are

$$
\hat{\omega}_{0}=\frac{100 \pi}{600}=\frac{2 \pi}{12} ; \quad \hat{\omega}_{1}=\frac{200 \pi}{600}=\frac{2 \cdot 2 \pi}{12} ; \quad \hat{\omega}_{2}=\frac{500 \pi}{600}=\frac{5 \cdot 2 \pi}{12}
$$

and the period of the sampled signal is $N=12$.

$$
\begin{aligned}
x(n) & =10+14 \cos \left(\frac{2 \cdot 2 \pi}{12} n-\frac{\pi}{3}\right)+8 \sin \left(\frac{5 \cdot 2 \pi}{12} n+\pi\right) \\
& =10+7 e^{-j \frac{\pi}{3}} \cdot e^{j \frac{2 \cdot 2 \pi}{12} n}+7 e^{j \frac{\pi}{3}} \cdot e^{-j \frac{2 \cdot 2 \pi}{12} n}+4 e^{j \frac{\pi}{2}} \cdot e^{j \frac{5 \cdot 2 \pi}{12} n}+4 e^{-j \frac{\pi}{2}} \cdot e^{-j \frac{5 \cdot 2 \pi}{12} n}
\end{aligned}
$$

where $n=0,1, \cdots, 11$ covers one period of $x(n)$. In order to find the discrete Fourier series of the above signal, we need to use the following DFS pair:

$$
\begin{equation*}
e^{j \frac{l \cdot 2 \pi}{N} n}, \quad n=0,1, \cdots, N-1 \Longleftrightarrow N \cdot \delta(k-l), \quad k=0,1, \cdots, N-1 \tag{7}
\end{equation*}
$$

and it also implies

$$
1, \quad n=0,1, \cdots, N-1 \Longleftrightarrow N \cdot \delta(k), \quad k=0,1, \cdots, N-1
$$

the proof will be in the next example. Applying equation (7) to $x(n)$, it yields

$$
\begin{aligned}
X(k) & =\left[10 \cdot \delta(k)+7 e^{-j \frac{\pi}{3}} \cdot \delta(k-2)+7 e^{j \frac{\pi}{3}} \cdot \delta(k+2)+4 e^{j \frac{\pi}{2}} \cdot \delta(k-5)+4 e^{-j \frac{\pi}{2}} \cdot \delta(k+5)\right] \cdot N \\
& =120 \cdot \delta(k)+84 e^{-j \frac{\pi}{3}} \cdot \delta(k-2)+84 e^{j \frac{\pi}{3}} \cdot \delta(k-N+2)+48 e^{j \frac{\pi}{2}} \cdot \delta(k-5)+48 e^{-j \frac{\pi}{2}} \cdot \delta(k-N+5) \\
& =120 \cdot \delta(k)+84 e^{-j \frac{\pi}{3}} \cdot \delta(k-2)+84 e^{j \frac{\pi}{3}} \cdot \delta(k-10)+48 e^{j \frac{\pi}{2}} \cdot \delta(k-5)+48 e^{-j \frac{\pi}{2}} \cdot \delta(k-7)
\end{aligned}
$$

where the periodicity property is used and $N=12$ is the period. The result can be verified by the attached Matlab ${ }^{T M}$ code.

k	0	1	2	3	4	5	6	$7(-5)$	$8(-4)$	$9(-3)$	$10(-2)$	$11(-1)$
$\omega=k \cdot \omega_{0}$	0	100π	200π	300π	400π	500π	600π	-500π	-400π	-300π	-200π	-100π
$\hat{\omega}=k \cdot \frac{2 \pi}{N}$	0	$\frac{2 \pi}{12}$	$\frac{4 \pi}{12}$	$\frac{6 \pi}{12}$	$\frac{8 \pi}{12}$	$\frac{10 \pi}{12}$	π	$-\frac{10 \pi}{12}$	$-\frac{8 \pi}{12}$	$-\frac{6 \pi}{12}$	$-\frac{4 \pi}{12}$	$-\frac{2 \pi}{12}$
$X(k)$	120	0	$84 e^{-j \frac{\pi}{3}}$	0	0	$48 e^{j \frac{\pi}{2}}$	0	$48 e^{-j \frac{\pi}{2}}$	0	0	$84 e^{j \frac{\pi}{3}}$	0
X_{k}	10	0	$7 e^{-j \frac{\pi}{3}}$	0	0	$4 e^{j \frac{\pi}{2}}$	0	$4 e^{-j \frac{\pi}{2}}$	0	0	$7 e^{j \frac{\pi}{3}}$	0
$X(k)$ fft $\cdot)$	120	0	$42-j 72.8$	0	0	$48 j$	0	$-48 j$	0	0	$42+j 72.8$	0
$X_{k}=\frac{X(k)}{N}$	10	0	$3.5-j 6.1$	0	0	$4 j$	0	$-4 j$	0	0	$3.5+j 6.1$	0

The hand calculated and computer generated results are compare in the table.
Matlab ${ }^{T M}$ code list:

```
% Discrete Fourier Series Example
% Kefu Xue, Ph.D.
% @ March 2000
%
fs=600;
T=1/fs;
n=0:11;
t=n*T;
xn=10+14*\operatorname{cos}(200*pi*t-pi/3)+8*sin(500*pi*t+pi);
Xok=fft(xn);
Xk=Xok/12;
```

The complex value of hand calculated coefficient, $84 e^{-j \frac{\pi}{3}}$, can be verified in Matlab ${ }^{T M}$ as follows.

```
84*exp(-j*pi/3)
```

Example 4 Find DFS of $e^{j \frac{l \cdot 2 \pi}{N} n}, \sin \left(\frac{l \cdot 2 \pi}{N} n\right)$ and $\cos \left(\frac{l \cdot 2 \pi}{N} n\right), \quad n=0,1, \cdots, N-1$.

$$
\begin{aligned}
& X(k)=\sum_{n=0}^{N-1} e^{j \frac{l \cdot 2 \pi}{N} n} e^{-j \frac{2 \pi}{N} k n}, \quad k=0,1, \cdots, N-1 \\
& =\sum_{n=0}^{N-1} e^{-j \frac{2 \pi}{N}(k-l) n}=\left\{\begin{array}{l}
\sum_{n=0}^{N-1} 1, \text { for } k=l \\
\frac{1-e^{-j \frac{2 \pi}{N}(k-l) N}}{1-e^{-j \frac{2 \pi}{N}(k-l)}}, \text { for } k \neq l
\end{array}\right. \\
& =\left\{\begin{array}{l}
N, \text { for } k=l \\
0, \text { for } k \neq l
\end{array}=N \cdot \delta(k-l), \quad k=0,1, \cdots, N-1\right.
\end{aligned}
$$

In the case of $\cos \left(\frac{l \cdot 2 \pi}{N} n\right)$, we have

$$
\cos \left(\frac{l \cdot 2 \pi}{N} n\right)=\frac{1}{2}\left[e^{j \frac{l \cdot 2 \pi}{N} n}+e^{-j \frac{l \cdot 2 \pi}{N} n}\right] .
$$

Using the complex exponential DFS pair, we have

$$
X(k)=\frac{N}{2}[\delta(k-l)+\delta(k+l)]
$$

Since $X(k)=X(k-N)$ is periodic, it yields the following DFS pair.

$$
\begin{equation*}
\cos \left(\frac{l \cdot 2 \pi}{N} n\right), \quad n=0,1, \cdots, N-1 \Longleftrightarrow \frac{N}{2}[\delta(k-l)+\delta(k-N+l)], \quad k=0,1, \cdots, N-1 \tag{8}
\end{equation*}
$$

Similarly,

$$
\sin \left(\frac{l \cdot 2 \pi}{N} n\right)=\frac{1}{2 j}\left[e^{j \frac{l \cdot 2 \pi}{N} n}-e^{-j \frac{l \cdot 2 \pi}{N} n}\right]
$$

yields

$$
\begin{equation*}
\sin \left(\frac{l \cdot 2 \pi}{N} n\right), \quad n=0,1, \cdots, N-1 \Longleftrightarrow \frac{N}{2 j}[\delta(k-l)-\delta(k-N+l)], \quad k=0,1, \cdots, N-1 \tag{9}
\end{equation*}
$$

Time-Frequency Spectrum

Consider a piece of music: "C(middle C), C, D, E, C, E, D, G (on octave down)", where middle $\mathrm{C}=262 \mathrm{~Hz}$, $\mathrm{D}=294 \mathrm{~Hz}, \mathrm{E}=330 \mathrm{~Hz}$ and G (one octave down from middle G) $=196 \mathrm{~Hz}$. The fundamental frequency for this piece of music is 2 Hz which is the maximum common factor of $262,294,330,196$. If a sampling frequency $f_{s}=1000 \mathrm{~Hz}$ is selected, $\frac{f_{s}}{f_{0}}=500$ will cover one period of the music, that is, $N=500$. The music is formed as follows.

$$
\begin{aligned}
x(n)= & \cos \left(\frac{2 \pi C}{1000} n\right) \quad(n=0, \cdots, 499) \\
+0^{\prime} s \quad(n= & 500, \cdots, 999)+\cos \left(\frac{2 \pi C}{1000} n\right) \quad(n=1000, \cdots, 1499) \\
+0^{\prime} s \quad(n= & 1500, \cdots, 1999)+\cos \left(\frac{2 \pi C}{1000} n\right) \quad(n=2000, \cdots, 2499) \\
+0^{\prime} s \quad(n= & 2500, \cdots, 2999)+\cos \left(\frac{2 \pi D}{1000} n\right) \quad(n=3000, \cdots, 3499) \\
& \cdots \\
+0^{\prime} s \quad(n= & 6500, \cdots, 6999)+\cos \left(\frac{2 \pi G}{1000} n\right) \quad(n=7000, \cdots, 7499)
\end{aligned}
$$

In the music $x(n)$, each note plays for 0.5 second and is separated with a silent space for 0.5 second. The Fourier spectrum shows all 4 frequency components in figure 1 (top-left). In order to reflect when a particular note is played, the spectrogram (DFS) is calculated with a non-overlap sliding window of length 500 samples (0.5 second). For each 500 samples of signal, we have the spectrum calculated and the spectra are displayed in figure 1. The Matlab ${ }^{T M}$ program of this example can be found on the Web site.

Figure 1: The comparison of spectrum and spectrogram of the music

