Supplemental notes I

Instructor: Kefu Xue, Ph. D., Dept. of EE, WSU

@Mar. 2000 to June 2007

Sampling and discrete-time signals:

For every signal, there exists a Nyquist frequency $f_N = 2f_B$ where f_B (bandwidth) is the highest frequency component in a signal $x_a(t)$ which has significant energy. The sampling frequency $f_s > f_N$ to avoid aliasing error. $x(n) = x_a(t)|_{t=nT}$, where $T = \frac{1}{f_s}$ is the sampling interval. Typical discrete-time signals u(n), $\delta(n)$,

$$u(n) = \begin{cases} 1, \text{ for } n \ge 0\\ 0, \text{ for } n < 0 \end{cases} = \sum_{k=-\infty}^{n} \delta(k), \qquad \delta(n) = \begin{cases} 1, \text{ for } n = 0\\ 0, \text{ otherwise} \end{cases} = u(n) - u(n-1)$$

and

$$e^{j\omega_0 Tn} = e^{j\hat{\omega}_0 n} = e^{j\frac{2\pi l}{N}n} = \cos(\frac{2\pi l}{N}n) + j\sin(\frac{2\pi l}{N}n)$$

where N is the period of the complex exponential signal and $\hat{\omega}_0 = \omega_0 T = \frac{2\pi l}{N}$ is the normalized frequency in radian. $e^{j\hat{\omega}_0 n}$ is periodic, only if $\frac{l}{N}$ is rational, that is, l and N are both integers.

Fourier series:

For any periodic signal $x_a(t)$ with period T_0 , the Fourier series representation of the signal is

$$x_a(t) = \sum_{k=-\infty}^{\infty} X_k e^{j\omega_0 kt} \tag{1}$$

and

$$X_{k} = \frac{1}{T_{0}} \int_{T_{0}} x_{a}(t) e^{-j\omega_{0}kt} dt$$
(2)

where $\omega_0 = \frac{2\pi}{T_0}$. A periodic signal can be expressed as a linear combination of sinusoids with frequencies of $k\omega_0$. Therefore, the ratio of any two frequency components in a periodic signal must be a rational number,

$$\frac{\omega_1}{\omega_2} = \frac{l\omega_0}{m\omega_0} = \frac{l}{m}$$

and its period is $T_0 = \frac{2\pi}{\omega_0}$ where ω_0 is a common factor of the frequency components $\omega_1, \omega_2, \omega_3, \cdots$.

Example 1 An analog signal $x_a(t) = 3\cos(300\pi t + 2) + 2\cos(450\pi t)$ is periodic, since

$$\frac{\omega_1}{\omega_2} = \frac{300\pi}{450\pi} = \frac{2 \times 150\pi}{3 \times 150\pi} \text{ or } \frac{6 \times 50\pi}{9 \times 50\pi}$$

and the period is either $T_0 = \frac{2\pi}{\omega_0} = \frac{1}{75}$ or $\frac{1}{25}$ second and $\omega_0 = 150\pi$ or 50π respectively.

Example 2 The bandwidth of $x_a(t) = 3\cos(300\pi t + 2) + 2\cos(450\pi t)$ is $f_B = 225$ Hz. Therefore, the Nyquist frequency of the signal is $f_N = 2f_B = 450$ Hz. To satisfy sampling theory, we select a sampling frequency of $f_s = 500$ Hz that is greater than f_N .

$$\begin{aligned} x(n) &= x_a(t)|_{t=nT} = 3\cos(\frac{300\pi n}{500} + 2) + 2\cos(\frac{450\pi n}{500}) \\ &= 3\cos(\frac{6*2\pi n}{20} + 2) + 2\cos(\frac{9*2\pi n}{20}) \end{aligned}$$

where the normalized frequencies $\hat{\omega}_1 = \omega_1 T = \frac{l_1 2\pi}{N}$ and $\hat{\omega}_2 = \omega_2 T = \frac{l_2 2\pi}{N}$. The signal is periodic and the period is N = 20 samples. One period (20 samples) of the digital signal covers 6 (l_1) period of frequency component of 300π (rad./sec.) and 9 (l_2) period of frequency component of 450π (rad./sec.). The 20 sample period of the discrete-time signal is equivalent to $20T = \frac{1}{25}$ second.

Discrete Fourier series (DFS) of a periodic signal:

A periodic signal can be expressed by a linear combination of sinusoids (1). Sampling of sinusoids in the linear combination generates a set of normalized frequency components, such as, $\hat{\omega}_1, \hat{\omega}_2, \hat{\omega}_3, \cdots$. The frequency components can be expressed as $\hat{\omega}_1 = \frac{l_1 2\pi}{N}$, $\hat{\omega}_2 = \frac{l_2 2\pi}{N}$, $\hat{\omega}_3 = \frac{l_3 2\pi}{N}$, \cdots , where N is the period. The fundamental frequency is $\hat{\omega}_0 = \frac{2\pi}{N}$. If a period of the sampled discrete-time signal x(n) is used for Fourier series analysis, the equations (1) and (2) yield

$$x(n) = x_a(nT) = \sum_{k=0}^{N-1} X_k e^{j\omega_0 knT}$$

$$= \sum_{k=0}^{N-1} X_k e^{j\hat{\omega}_0 kn} = \sum_{k=0}^{N-1} X_k e^{j\frac{2\pi}{N}kn}, \quad n = 0, 1, \cdots, N-1$$
(3)

and

$$X_{k} = \frac{1}{T_{0}} \int_{T_{0}} x_{a}(nT) e^{-j\omega_{0}knT} T$$

$$= \frac{1}{NT} \sum_{n=0}^{N-1} x_{a}(nT) e^{-j\omega_{0}knT} T$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi}{N}kn}, \quad k = 0, 1, \cdots, N-1$$
(4)

respectively. The convention used in $Matlab^{TM}$ and other text book is as follows.

DFS:
$$X(k) = X_k \cdot N = \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi}{N}kn}, \quad k = 0, 1, \cdots, N-1$$
 (5)

and

IDFS:
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}kn}, \quad n = 0, 1, \cdots, N-1.$$
 (6)

There are three important properties of DFS:

Priodicity: $X(k) = X(k \pm N)$ and $x(n) = x(n \pm N)$

Symmetry: $X(k) = X^*(N-k)$, if x(n) is a real valued signal.

Example 3 Consider a periodic signal

$$\begin{aligned} x_a(t) &= 10 + 14\cos(200\pi t - \frac{\pi}{3}) + 8\sin(500\pi t + \pi) \\ &= 10 + 14\frac{e^{j(200\pi t - \frac{\pi}{3})} + e^{-j(200\pi t - \frac{\pi}{3})}}{2} + 8\frac{e^{j(500\pi t + \pi)} - e^{-j(500\pi t + \pi)}}{2j} \\ &= 10 + 7e^{-j\frac{\pi}{3}} \cdot e^{j200\pi t} + 7e^{j\frac{\pi}{3}} \cdot e^{-j200\pi t} + 4e^{-j\frac{\pi}{2}}(e^{j\pi} \cdot e^{j500\pi t} + e^{-j500\pi t}) \\ &= 10 + 7e^{-j\frac{\pi}{3}} \cdot e^{j200\pi t} + 7e^{j\frac{\pi}{3}} \cdot e^{-j200\pi t} + 4e^{j\frac{\pi}{2}} \cdot e^{j500\pi} + 4e^{-j\frac{\pi}{2}} \cdot e^{-j500\pi} \end{aligned}$$

We can find the Fourier series coefficients X_k and ω_0 by using series recognition method.

$$\frac{\omega_1}{\omega_2} = \frac{200\pi}{500\pi} = \frac{2 \times 100\pi}{5 \times 100\pi}, \quad \omega_0 = 100\pi$$

and

$$X_0 = 10; \quad X_2 = X_{-2}^* = 7e^{-j\frac{\pi}{3}}; \quad X_5 = X_{-5}^* = 4e^{j\frac{\pi}{2}}$$

Since the Nyquist frequency of the signal is $f_N = 500$ Hz, the $f_s = 600$ Hz is selected. Therefore, the normalized frequency components are

$$\hat{\omega}_0 = \frac{100\pi}{600} = \frac{2\pi}{12}; \quad \hat{\omega}_1 = \frac{200\pi}{600} = \frac{2 \cdot 2\pi}{12}; \quad \hat{\omega}_2 = \frac{500\pi}{600} = \frac{5 \cdot 2\pi}{12}$$

and the period of the sampled signal is N = 12.

$$\begin{aligned} x(n) &= 10 + 14\cos(\frac{2 \cdot 2\pi}{12}n - \frac{\pi}{3}) + 8\sin(\frac{5 \cdot 2\pi}{12}n + \pi) \\ &= 10 + 7e^{-j\frac{\pi}{3}} \cdot e^{j\frac{2 \cdot 2\pi}{12}n} + 7e^{j\frac{\pi}{3}} \cdot e^{-j\frac{2 \cdot 2\pi}{12}n} + 4e^{j\frac{\pi}{2}} \cdot e^{j\frac{5 \cdot 2\pi}{12}n} + 4e^{-j\frac{\pi}{2}} \cdot e^{-j\frac{5 \cdot 2\pi}{12}n} \end{aligned}$$

where $n = 0, 1, \dots, 11$ covers one period of x(n). In order to find the discrete Fourier series of the above signal, we need to use the following DFS pair:

$$e^{j\frac{l\cdot 2\pi}{N}n}, \quad n = 0, 1, \cdots, N-1 \iff N \cdot \delta(k-l), \quad k = 0, 1, \cdots, N-1$$
 (7)

and it also implies

,
$$n = 0, 1, \cdots, N - 1 \iff N \cdot \delta(k), \quad k = 0, 1, \cdots, N - 1$$

the proof will be in the next example. Applying equation (7) to x(n), it yields

1

$$\begin{aligned} X(k) &= \left[10 \cdot \delta(k) + 7e^{-j\frac{\pi}{3}} \cdot \delta(k-2) + 7e^{j\frac{\pi}{3}} \cdot \delta(k+2) + 4e^{j\frac{\pi}{2}} \cdot \delta(k-5) + 4e^{-j\frac{\pi}{2}} \cdot \delta(k+5)\right] \cdot N \\ &= 120 \cdot \delta(k) + 84e^{-j\frac{\pi}{3}} \cdot \delta(k-2) + 84e^{j\frac{\pi}{3}} \cdot \delta(k-N+2) + 48e^{j\frac{\pi}{2}} \cdot \delta(k-5) + 48e^{-j\frac{\pi}{2}} \cdot \delta(k-N+5) \\ &= 120 \cdot \delta(k) + 84e^{-j\frac{\pi}{3}} \cdot \delta(k-2) + 84e^{j\frac{\pi}{3}} \cdot \delta(k-10) + 48e^{j\frac{\pi}{2}} \cdot \delta(k-5) + 48e^{-j\frac{\pi}{2}} \cdot \delta(k-7) \end{aligned}$$

where the periodicity property is used and N = 12 is the period. The result can be verified by the attached MatlabTM code.

k	0	1	2	3	4	5	6	7(-5)	8(-4)	9(-3)	10(-2)	11(-1)
$\omega = k \cdot \omega_0$	0	100π	200π	300π	400π	500π	600π	-500π	-400π	-300π	-200π	-100π
$\hat{\omega} = k \cdot \frac{2\pi}{N}$	0	$\frac{2\pi}{12}$	$\frac{4\pi}{12}$	$\frac{6\pi}{12}$	$\frac{8\pi}{12}$	$\frac{10\pi}{12}$	π	$-\frac{10\pi}{12}$	$-\frac{8\pi}{12}$	$-\frac{6\pi}{12}$	$-\frac{4\pi}{12}$	$-\frac{2\pi}{12}$
X(k)	120	0	$84e^{-j\frac{\pi}{3}}$	0	0	$48e^{j\frac{\pi}{2}}$	0	$48e^{-j\frac{\pi}{2}}$	0	0	$84e^{j\frac{\pi}{3}}$	0
X_k	10	0	$7e^{-j\frac{\pi}{3}}$	0	0	$4e^{j\frac{\pi}{2}}$	0	$4e^{-j\frac{\pi}{2}}$	0	0	$7e^{j\frac{\pi}{3}}$	0
$X(k) fft(\cdot)$	120	0	42 - j72.8	0	0	48j	0	-48j	0	0	42 + j72.8	0
$X_k = \frac{X(k)}{N}$	10	0	3.5 - j6.1	0	0	4j	0	-4j	0	0	3.5 + j6.1	0

The hand calculated and computer generated results are compare in the table.

MatlabTM code list:

```
% Discrete Fourier Series Example
% Kefu Xue, Ph.D.
% @ March 2000
%
fs=600;
T=1/fs;
n=0:11;
t=n*T;
xn=10+14*cos(200*pi*t-pi/3)+8*sin(500*pi*t+pi);
Xok=fft(xn);
Xk=Xok/12;
```

The complex value of hand calculated coefficient, $84e^{-j\frac{\pi}{3}}$, can be verified in MatlabTM as follows.

84*exp(-j*pi/3)

Example 4 Find DFS of $e^{j\frac{l\cdot 2\pi}{N}n}$, $\sin(\frac{l\cdot 2\pi}{N}n)$ and $\cos(\frac{l\cdot 2\pi}{N}n)$, $n = 0, 1, \dots, N-1$.

$$\begin{aligned} X(k) &= \sum_{n=0}^{N-1} e^{j\frac{l\cdot 2\pi}{N}n} e^{-j\frac{2\pi}{N}kn}, \quad k = 0, 1, \cdots, N-1 \\ &= \sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}(k-l)n} = \begin{cases} \sum_{n=0}^{N-1} 1, \text{ for } k = l \\ \frac{1-e^{-j\frac{2\pi}{N}(k-l)N}}{1-e^{-j\frac{2\pi}{N}(k-l)}}, \text{ for } k \neq l \end{cases} \\ &= \begin{cases} N, \text{ for } k = l \\ 0, \text{ for } k \neq l \end{cases} = N \cdot \delta(k-l), \quad k = 0, 1, \cdots, N-1 \end{aligned}$$

In the case of $\cos(\frac{l\cdot 2\pi}{N}n)$, we have

$$\cos(\frac{l\cdot 2\pi}{N}n) = \frac{1}{2}\left[e^{j\frac{l\cdot 2\pi}{N}n} + e^{-j\frac{l\cdot 2\pi}{N}n}\right].$$

Using the complex exponential DFS pair, we have

$$X(k) = \frac{N}{2} [\delta(k-l) + \delta(k+l)]$$

Since X(k) = X(k - N) is periodic, it yields the following DFS pair.

$$\cos(\frac{l\cdot 2\pi}{N}n), \quad n = 0, 1, \cdots, N-1 \iff \frac{N}{2}[\delta(k-l) + \delta(k-N+l)], \quad k = 0, 1, \cdots, N-1$$
(8)

Similarly,

$$\sin(\frac{l \cdot 2\pi}{N}n) = \frac{1}{2j} \left[e^{j\frac{l \cdot 2\pi}{N}n} - e^{-j\frac{l \cdot 2\pi}{N}n} \right]$$

yields

$$\sin(\frac{l\cdot 2\pi}{N}n), \quad n = 0, 1, \cdots, N-1 \iff \frac{N}{2j} [\delta(k-l) - \delta(k-N+l)], \quad k = 0, 1, \cdots, N-1$$
(9)

Time–Frequency Spectrum

Consider a piece of music: "C(middle C), C, D, E, C, E, D, G (on octave down)", where middle C=262 Hz, D=294 Hz, E=330 Hz and G (one octave down from middle G)=196 Hz. The fundamental frequency for this piece of music is 2 Hz which is the maximum common factor of 262, 294, 330, 196. If a sampling frequency $f_s = 1000$ Hz is selected, $\frac{f_s}{f_0} = 500$ will cover one period of the music, that is, N = 500. The music is formed as follows.

$$\begin{aligned} x(n) &= \cos(\frac{2\pi C}{1000}n) \quad (n = 0, \cdots, 499) \\ +0's \quad (n &= 500, \cdots, 999) + \cos(\frac{2\pi C}{1000}n) \quad (n = 1000, \cdots, 1499) \\ +0's \quad (n &= 1500, \cdots, 1999) + \cos(\frac{2\pi C}{1000}n) \quad (n = 2000, \cdots, 2499) \\ +0's \quad (n &= 2500, \cdots, 2999) + \cos(\frac{2\pi D}{1000}n) \quad (n = 3000, \cdots, 3499) \\ & \cdots \\ +0's \quad (n &= 6500, \cdots, 6999) + \cos(\frac{2\pi G}{1000}n) \quad (n = 7000, \cdots, 7499) \end{aligned}$$

In the music x(n), each note plays for 0.5 second and is separated with a silent space for 0.5 second. The Fourier spectrum shows all 4 frequency components in figure 1 (top–left). In order to reflect when a particular note is played, the spectrogram (DFS) is calculated with a non–overlap sliding window of length 500 samples (0.5 second). For each 500 samples of signal, we have the spectrum calculated and the spectra are displayed in figure 1. The MatlabTM program of this example can be found on the Web site.

Figure 1: The comparison of spectrum and spectrogram of the music