EE322/EE522

Digital Signals and Systems

1.01: Signals and Signal Models
@ Kefu Xue, Ph.D., June 2006

MIIE
WRIGHT STATE

Media, Sensors and Real Signals

- Air Pressure, Microphone, Speaker, Audio signals: Speech and Music
- Light, Camera, LCD display, video/image signals: Movies and Pictures
- Electrical Field, Electrodes, ECG \& EEG signals: (electrocardiogram and electroencephalography)
- Liquid and Gas Pressure, Piezoelectric transducer, ultrasonic signals: Medical image, sensing objects and measuring distances in robotic and industrial applications.
$\xlongequal[\text { @ Kefu Xue, Ph.D., June 2006 }]{\substack{\text { WRIGHT STATE }}}$

[^0]
Signals: Energy and Amplitude Variations

- All signals consume energy.
- All signals vary their amplitude with respect to time, space or both.
- Signals are often represented mathematically as a function $x_{a}(t)$.
- Continuous time signal: the domain t is a continuous independent variable.
- Discrete time signal: the domain t is a discrete independent variable
- Digital signal: Both the domain t and range x() are discrete variables.
@ Kefu Xue, Ph.D., June 2006

More Typical Signals

Sinusoidal signals: $\quad x_{a}(t)=A \sin \left(\omega_{0} t\right) \quad$ and $\quad A \cos \left(\omega_{0} t\right)$
Complex exponential signals: $x_{a}(t)=A e^{j \omega_{0} t}=A\left[\cos \left(\omega_{0} t\right)+j \sin \left(\omega_{0} t\right)\right]$
Phase (radian): $\quad \varphi(t)=\omega_{0} t$
Frequency (radian/second): $\quad \omega(t)=\frac{d \varphi(t)}{d t}=\omega_{0}$
Period (second): $\quad T_{0}=\frac{2 \pi}{\omega_{0}}=\frac{1}{f_{0}}$
$A \sin \left(\omega_{0} t\right)=\frac{e^{j \omega_{0} t}-e^{-j \omega_{0} t}}{2 j}, \quad A \cos \left(\omega_{0} t\right)=\frac{e^{j \omega_{0} t}+e^{-j \omega_{0} t}}{2}$
WRIGHT STATE

Typical continuous time signals and their mathematical representations:

$$
\left.\begin{array}{l}
\text { Unit Step function: } \quad u(t)= \begin{cases}1 & t \geq 0 \\
0 & t<0\end{cases} \\
\text { Unit Impulse function: } \quad \delta(t)=\left\{\begin{array}{cc}
\infty\left(\text { or } \frac{1}{\varepsilon}\right) & t=0 \\
0 & t \neq 0
\end{array} \text { and } \int_{-\varepsilon}^{\varepsilon} \delta(\tau) d \tau=1\right.
\end{array}\right\} \begin{aligned}
& \text { Time Shift: } \quad u(t-3) ; \quad \delta(t+2) ; \quad u(t+5) \\
& \text { Square Pulse: } \quad p(t)=u(t+3)-u(t-3) \\
& \text { Time Scale: } \quad p(2 t)=u(2 t+3)-u(2 t-3)=u\left(t+\frac{3}{2}\right)-u\left(t-\frac{3}{2}\right) \\
& \\
& \quad p\left(\frac{t}{2}\right)=u\left(\frac{t}{2}+3\right)-u\left(\frac{t}{2}-3\right)=u(t+6)-u(t-6)
\end{aligned}
$$

Signal with Multiple Sinusoids:

$$
\begin{array}{ll}
x_{a}(t)=2 \cos (200 \pi t-1)+\sin \left(120 \pi t+\frac{\pi}{3}\right)-0.5 \cos (80 \pi t+2) \\
\text { Frequency components: } & 200 \pi, 120 \pi, 80 \pi \\
\text { Find the fundamental } & \omega_{0}=M C F\{200 \pi, 120 \pi, 80 \pi\}=40 \pi \\
\text { Frequency and Period: } & 200 \pi=5 \omega_{0} ; \quad 120 \pi=3 \omega_{0} ; \quad 80 \pi=2 \omega_{0} \\
& T_{0}=\frac{2 \pi}{\omega_{0}}=\frac{1}{20} \tag{s}
\end{array}
$$

Phase shift and time shift:
$x_{a}(t)=\sin \left(120 \pi t+\frac{\pi}{3}\right) ; \quad \varphi_{0}=\frac{\pi}{3} \quad($ rad. $) ; \quad \Delta t=\frac{\varphi_{0}}{\omega_{0}}=\frac{1}{360}$
$x_{a}(t)=\sin \left(120 \pi\left(t+\frac{\pi}{3 \cdot 120 \pi}\right)\right)=\sin \left(120 \pi\left(t+\frac{1}{360}\right)\right)$

Matlab code for plotting Sinusoids:

\% Multiple Sinusoids:
\%
\% @ Kefu Xue, Ph.D., June 2006
$\%$
f0=20; \% fundamental frequency from Maximum Common Factor: 40pi TO=1/f0; $\%$ shortest period of the signal
T=T0/40; \% sampling 40 samples over a period of the signal
$\mathrm{N}=120$; \% plot 3 periods
$\mathrm{t}=[0: \mathrm{N}-1]^{\star} \mathrm{T}$; \% time sampling vector
s1=2* $\cos \left(200^{*}{ }^{*}{ }^{*} t-1\right)$;
$\mathrm{s} 2=\sin \left(120^{*} \mathrm{pi}{ }^{*}+\mathrm{pi} / 3\right)$;
$\mathrm{s} 3=-0.5^{*} \cos \left(80^{*} \mathrm{pi}{ }^{\star}+2\right)$;
$\mathrm{x}=\mathrm{s} 1+\mathrm{s} 2+\mathrm{s} 3$;
$\cos 200 \mathrm{pi}=\cos (200 * \mathrm{pi*t})$;
$\sin 120 \mathrm{pi}=\sin \left(120^{*} \mathrm{pi} * \mathrm{t}\right)$
$\cos 80 \mathrm{pi}=\cos (80 * \mathrm{pi} \mathrm{t})$);

@ Kefu Xue, Ph.D., June 2006	WRIGHT STATE

Matlab code continue:

Signal "size": Energy

\% compare the signals
figure;subplot(4,1,1);plot(t,cos200pi,'b','t,s1,'r');axis tight; title('Compare the first sinusoid with a plan cosine function'); subplot(4,1,2);plot(t,sin120pi,'b',t,s2,'r');axis tight
title('Compare the second sinusoid with a plan sine function') subplot(4,1,3);plot(t,cos80pi,'b',t,s3,'r');axis tight;
title('Compare the third sinusoid with a plan cosine function');
subplot(4,1,4);plot(t,x,'b');axis tight;
title('The complete signal.')
xlabel('time in second');
\% end of file

Numerical
approximation
$E_{x} \cong \sum_{n=0}^{N-1} x_{a}(n T) \cdot x_{a}(n T) \cdot T$
Where T is the sampling interval and N is the number of samples which cover samples which cover signal.

珻相
approximation
\qquad

$$
E_{x}=\int_{-\infty}^{\infty} x_{a}^{2}(\tau) d \tau
$$

Examples: $\quad x_{a}(t)=3 * e^{-2 t} u(t)$

$$
\begin{aligned}
E_{x} & =\int_{-\infty}^{\infty} 3^{2} e^{-2 \cdot 2 \tau} u(\tau) d \tau=\int_{0}^{\infty} 9 e^{-4 \tau} d \tau \\
& =\left.\frac{9}{-4} e^{-4 \tau}\right|_{0} ^{\infty}=0-\frac{9}{-4}=2.25
\end{aligned}
$$

Matlab code for Energy calculation:

\% Integration approximation and Signal energy and power:
\%
\% @ Kefu Xue, Ph.D., June 2006
\%
\% An exponential signal
$\mathrm{T}=10^{\wedge}-3$; \% pick a sampling frequency
$\mathrm{D}=100$; \% pickup a duration of 100 seconds
$\mathrm{N}=\mathrm{D} / \mathrm{T}$; \% total number of samples
$\mathrm{t}=[0: \mathrm{N}-1]^{*} \mathrm{~T}$;
xe=3*exp(-2*t)
Exe=sum(xe.*xe)*T;
$\operatorname{disp}([$ 'The approximated total energy is ' num2str(Exe)]);
\% end of file

Matlab code for Power calculation:

Signal Comparison and Correlation

\% Power calculation:

$\mathrm{fO}=20$; \% fundamental frequency from Maximum Common Factor: 40pi TO=1/f0; \% shortest period of the signal
$\mathrm{T}=\mathrm{TO} / 40$; \% sampling 40 samples over a period of the signa
$\mathrm{N}=12 \mathrm{O}$; \% plot 3 periods
$\mathrm{t}=[0: \mathrm{N}-1]^{*} \mathrm{~T} ; \%$ time sampling vector
$\mathrm{s} 1=2^{*} \cos \left(200^{*}{ }^{2} \mathrm{i}^{*} \mathrm{t}-1\right)$;
Ps1=sum(s1(1:40).^2)/40,
display(['The power of a sinusoidal s1 (A^2/2) is equal to ' num2str(Ps1))]; $\mathrm{s} 2=\sin \left(120^{*} \mathrm{p} \mathrm{p}^{\star}+\mathrm{p} / \mathrm{i} / 3\right)$;
Ps2=sum(s2(1:40).^2)/40;
display(['The power of a sinusoidal s2 is equal to ' num2str(Ps2)]); s3 $=-0.5^{*} \cos \left(80^{*} \mathrm{p} \mathrm{i}^{*} t+2\right)$; Ps3=sum(s3(1:40).^2)/40;
display(['The power of a sinusoidal s3 is equal to ' num2str(Ps3)]); $\mathrm{x}=\mathrm{s} 1+\mathrm{s} 2+\mathrm{s} 3$;
$\left.\mathrm{x}=\mathrm{s} 1+\mathrm{s} 2+\mathrm{s}(1 ; 40) .{ }^{\wedge} 2\right) / 40$;
$\mathrm{Px}=\operatorname{sum}(\mathrm{x}(1: 40)$

$$
\gamma_{x x}(0)=\int_{0}^{2} x_{a}(\tau) x_{a}(\tau) d \tau=\int_{0}^{2} \cos ^{2}(\pi \tau) d \tau=1
$$

display(['The power of multiple sinusoids is equal to ' num2str(Px)]);
\% end of file

$$
\gamma_{x y}(0)=\int_{D} x_{a}(\tau) y_{a}(\tau) d \tau
$$

D is the time duration of the signals involved which could be infinite.
Example: Consider the $\quad x_{a}(t)=\cos (\pi t)[u(t)-u(t-2)]$
following 3 signals

$$
\begin{aligned}
& y_{a}(t)=\sin (\pi t)[u(t)-u(t-2)] \\
& z_{a}(t)=e^{-4 t}[u(t)-u(t-3)]
\end{aligned}
$$

$$
\gamma_{x y}(0)=\int_{0}^{2} x_{a}(\tau) y_{a}(\tau) d \tau=\int_{0}^{2} \cos (\pi \tau) \sin (\pi \tau) d \tau=0
$$

Signal Comparison and Correlation

$$
\begin{aligned}
& \gamma_{x z}(0)=\int_{0}^{2} x_{a}(\tau) z_{a}(\tau) d \tau=\int_{0}^{2} \cos (\pi \tau) e^{-4 \tau} d \tau \\
& =\left.\frac{e^{-4 \tau}}{(-4)^{2}+\pi^{2}}(-4 \cos (\pi \tau)+\pi \sin (\pi \tau))\right|_{0} ^{2}=0.1546
\end{aligned}
$$

$$
\gamma_{y z}(0)=\int_{0}^{2} y_{a}(\tau) z_{a}(\tau) d \tau=\int_{0}^{2} \sin (\pi \tau) e^{-4 \tau} d \tau
$$

$$
=\frac{e^{-4 \tau}}{(-4)^{2}+\pi^{2}}\left(-4 \sin (\pi \tau)-\left.\pi \cos (\pi \tau)\right|_{0} ^{2}=0.1214\right.
$$

$$
\underset{\text { approximation: }}{\substack{\text { Numerical } \\ \text { ay }}}(0) \cong \sum_{n=0}^{N-1} y_{a}(n T) \cdot x_{a}(n T) \cdot T
$$

$$
\begin{array}{ll}
& \begin{array}{c}
n \\
\text { @ Kefu Xue, Ph.D., June 2006 }
\end{array} \\
\begin{array}{c}
\text { WRIGHT STATE } \\
\text { UNIVERSITY }
\end{array} \\
\hline
\end{array}
$$

Signal Comparison

The exponential function is more closely correlated to the cosine function.

Signal Comparison and Correlation

$$
\begin{aligned}
& \gamma_{y y}(0)=\int_{0}^{2} y_{a}(\tau) y_{a}(\tau) d \tau=\int_{0}^{2} \sin ^{2}(\pi \tau) d \tau=1 \\
& \gamma_{y y}(0)=\gamma_{x x}(0)=1 \quad \text { Unit Energy as a comparison base } \\
& \gamma_{z z}(0)=\int_{0}^{3} z_{a}(\tau) z_{a}(\tau) d \tau=\int_{0}^{3} e^{-8 \tau} d \tau=\left.\frac{1}{-8} e^{-8 \tau}\right|_{0} ^{3}=0.124999
\end{aligned}
$$

Matlab command> gamaxy=sum(xa.*ya)*T;
Normalized correlation coefficient:

$$
\gamma_{x y}(0)=\frac{1}{\sqrt{E_{x} E_{y}}} \int_{D} x_{a}(\tau) y_{a}(\tau) d \tau
$$

Normalized: $\quad \gamma_{y z}(0)=\frac{0.1214}{\sqrt{0.124999}}=0.3434 ; \quad \gamma_{x z}(0)=\frac{0.1546}{\sqrt{0.124999}}=0.4374$

Correlation Continue ...

Correlation Function:

$$
\gamma_{x y}(u)=\int_{D} x_{a}(\tau+u) y_{a}(\tau) d \tau+\int_{D} x_{a}(\tau) y_{a}(\tau-u) d \tau
$$

The independent variable u will have a domain to control the number of correlation values to be calculated.
For example:

$$
\gamma_{x z}(u)=\int_{D} x_{a}(\tau+u) z_{a}(\tau) d \tau
$$

$$
\gamma_{y z}(u)=\int_{D} y_{a}(\tau+u) z_{a}(\tau) d \tau, \quad \text { for } u=10^{-3} \text { and }-10^{-3}
$$

WRIGHT STATE

$$
\begin{aligned}
& \text { Correlation Continue } . . . \\
& \gamma_{x z}\left(10^{-3}\right)=\int_{0}^{2-10^{-3}} x_{a}\left(\tau+10^{-3}\right) z_{a}(\tau) d \tau=\int_{10^{-3}}^{2} x_{a}(\tau) z_{a}\left(\tau-10^{-3}\right) d \tau \\
& =\int_{10^{-3}}^{2} \cos (\pi \tau) e^{-4\left(\tau-10^{-3}\right)} d \tau=e^{4 \cdot 10^{-3}} \int_{10^{-3}}^{2} \cos (\pi \tau) e^{-4 \tau} d \tau \\
& =\left.\frac{e^{4 \cdot 10^{-3}} \cdot e^{-4 \tau}}{(-4)^{2}+\pi^{2}}(-4 \cos (\pi \tau)+\pi \sin (\pi \tau))\right|_{10^{-3}} ^{2}=0.1542 \\
& \gamma_{y z}\left(10^{-3}\right)=\int_{10^{-3}}^{2} \sin (\pi \tau) e^{-4\left(\tau-10^{-3}\right)} d \tau \\
& =\left.\frac{e^{4 \cdot 10^{-3}} \cdot e^{-4 \tau}}{(-4)^{2}+\pi^{2}}(-4 \sin (\pi \tau)-\pi \cos (\pi \tau))\right|_{10^{-3}} ^{2}=0.1219
\end{aligned}
$$

Correlation Continue ...

$$
\begin{aligned}
& \gamma_{x z}\left(-10^{-3}\right)=\int_{10^{-3}}^{2} x_{a}\left(\tau-10^{-3}\right) z_{a}(\tau) d \tau=\int_{0}^{2} x_{a}(\tau) z_{a}\left(\tau+10^{-3}\right) d \tau \\
& =\int_{0}^{2} \cos (\pi \tau) e^{-4\left(\tau+10^{-3}\right.} d \tau=e^{-4.10^{-3}} \int_{0}^{2} \cos (\pi \tau) e^{-4 \tau} d \tau \\
& \quad=\frac{e^{-4.10^{-3}} \cdot e^{-4 \tau}}{(-4)^{2}+\pi^{2}}\left(-4 \cos (\pi \tau)+\left.\pi \sin (\pi \tau)\right|_{0} ^{2}=0.1539\right. \\
& \gamma_{y z}\left(-10^{-3}\right)=\int_{0}^{2} \sin (\pi \tau) e^{-4\left(\tau+10^{-3}\right.} d \tau \\
& =\left.\frac{e^{-410^{-3}} \cdot e^{-4 \tau}}{(-4)^{2}+\pi^{2}}(-4 \sin (\pi \tau)-\pi \cos (\pi \tau))\right|_{0} ^{2}=0.1209
\end{aligned}
$$

Matlab function: fgamayz=xcorr(ya,za,1)*T; the results:
Matlab function: fgamaxz=xcorr(xa,za,1)*T; the results:
$0.1545,0.1551,0.1547$ approximates the integration results.

Examine the Correlation function:

Examine the Correlation function:

Consider the sampled signals, $y(n), x(n)$ and $z(n)$:

$$
\begin{aligned}
& x(n)=x_{a}(n T), \quad y(n)=y_{a}(n T), \quad z(n)=z_{a}(n T) \\
& \gamma_{x y}(k)=\sum_{k=-L}^{L} x(n+k) y(n), \quad u=k T
\end{aligned}
$$

where k is the index for the time shift in number of sampling intervals. k can go from -L to L to produce a correlation function of $2 \mathrm{~L}+1$ samples. Matlab function: gamaxy=xcorr($\mathrm{x}, \mathrm{y}, \mathrm{L}$).
-Starting index: Sx, Sy; Ending index: Ex, Ey
-Length: Lx=Ex-Sx+1; Ly=Ey-Sy+1
-Starting: $k+E x=S y$ yields Sgama=Sy-Ex
-Ending: k-Sx=Ey yields Egama=Ey+Sx
-Lgama=Lx+Ly-1
-zero-lag (k=0) at: |Sgama|+1 or |Sgama|+2 in Matlab

The best correlation (peak) between the exponential and sine functions is at time shift $t=0.287$ s. or a phase shift $\rho=0.287 \pi$. It has better correlation than cosine function with the phase shift.

WRIGHT STATE

[^0]: Matlab --- a tool used extensively in EE Curriculum
 \% EE322 Example
 \%
 \% @ Kefu Xue, Ph.D., June 2006
 \%
 filnm=input('Enter the wave file name: ','s');
 [x, fs, bits]=wavread(filnm);
 $\mathrm{N}=$ length (x);
 $\mathrm{t}=[0: \mathrm{N}-1] / \mathrm{fs}$;
 figure; plot((t, x);axis tight;xlabel('time in second');
 ylabel('Amplitude');
 title(['Signal in the wave file: ' filnm]);
 \%
 \% end of file
 @ Kefu Xue, Ph.D., June 2006

