

ſ	WR WR	IGHT SI																		
			Ρ	eri	ioc	lic	Т	ab	le	of	tł	۱e	e E	Ele	m	en	ts			
1	1 1 '	New Original 2		Alkali	metals ne earth m	etais	A	ctinide ser	ies	C	Solid	d		13	14	15	16	17	18 VIIA 2 He	2 K
2	Hydrogan 1.00794 3 î Li Lithium	IA 4 ² Be Bentium		Trans Lanth	ition metal anide seri	ls es	N	onmetais oble gase	s	н	Gas Synt	netic		IIA 5 3 Baran	IVA 6 C Caton	VA 7 N Nirogen	VIA 8 0 0 0 0	VIIA 9 7 F	Helum 4.002602 10 Neon	70
3	6.941 11 } Na ^{Sodkum} 22.969770	9.012182 12 Mg Magnesium 24.3050	3	4 IVB	5 V8	6 VIB	7 VIIB	8	9 VIIIB	10	11		12	13 3 Al Aluminum 26.981538	12.0167 14 Si 28.0855	14.05674 15 P Phosphorus 30.973761	15.9904 16 S Bullur 32.090	18.9984032 17 2 Cl Chlorine 35.453	20.1797 18 Ar Argon 39.948	K-1
4	10 K Potassium 39.0983	20 6 Ca Calcium 40.078 2	21 Sc Scandium 44.955910	22 8 Ti 19 Titanium 47.857	23 1 V 11 50.9415	24 Cr Chromium 51.9661	25 Mn ¹³ Manganese 54.938049	26 Fe 55.8457	27 Co Cobat 55.933200	28 Ni Nickel 58.6934	29 Cu Copper 63.546	¹⁰ Z	0 Zn ¹⁹ 5.409	31 Gatium 69.723 40 3	32 Ge Gemanium 72.64	33 As Assenic 74.92160	34 Se ^{Solenium} 78.95	35 8 Br ¹⁹ Bromine 79.904	36 Kr Krypton 83.798	N ZEFA
5	Rb Publicitum 85.4678	Strondum	Y Stanson	Zr ¹⁰ Zirconium 91.224	Nobium 92.90638	Mo 95.94	Tc 12 Technetium (98)	Ru Ruthenium 101.07	Rh Rhodium 102.90650	Pd Paladium 106.42	Ag SElver 107.8682	11 C	Cd ¹ admium 12.411	In 19 Indum 114.818	Sn 1 118.710	Sb Antimony 121.760	Te Telurium 127.60	Lodine 126.90447	Xe Xeron 131.293	A 022
6	Cs	Barium 137.327	57 to 71	High Hathium 178.49	Tattalum 180.9479	W Tungsten 183.84	Re 13	Osmium 190.23	Ir Iridum 192.217	Pt Platinum 196.078	Au Gold 196 9069	H Ma	lg tercury 00.59	TI 33	Pb	Bi Bismuth 208.98035	Po Potonium (209)	At 50 Assatine (210)	Rn Radon (222)	1022
7	87 88 Fr 88 Francium 9 (223)	88 6 Ra 18 Radium 2 (226)	89 to 103	104 6 Rf 88 Rutetotikm 10 (261)	105 6 Db 88 Dubrium 12 (262)	106 6 Sg (266) 12 (266) 12	107 8 Bh 8 Bohrium 12 (264)	Hassium (259)	109 Mt (268) most stable	110 Ds Carnitation (271)	isotope	1 U UC	12 5 Jub 55 huntium 12 85)	113 Uut Ununtium (284)	114 Uuq Ununquadiur (289)	115 Uup Unurpentium (288)	116 Uuh Ununhenium (292)	117 Ununseptium	118 Ununocium	0.002202
				57 8	58 🛔	59 8	60 8	Design C	opyright © 195	7 Michael Da	rah (michae	@dayal	ih.com). http	c//www.dayah 66 i	com/periodic.	68 1	69	70 8	71	2
0 5 5 2 2	ote: The subgri imbers 1-18 wi 1984 by the in high of Pure an high of Pure an	oup ere adopted ternational nd Applied names of		Lanthanum	Ce 18	Pr Instruction and a 140.90765	Nd Neodymium	Promothium (145)	Sm Barnarium 150.36	Eu Europium 151.964	Gd Gadoliniu 167.25	19 To	Fb 19 ertblum 58.92534	Dysprosium	Ho Holmium 164.93032	Er Etbium 167.299	Tm 508.93421	Yb Starbium	Lutedum 174.967	a selfe
el Li n	ements 112-11 tin equivalents imbers.	I8 are the s of those		AC and a contract of the contr	90 8 Th 18 232.0381	91 5 Pa 5 Principalities 5 231.03588	92 8 U 32 Uranium 2 238.02891	93 Np Neptunium	Pu S Putonium (244)	95 Am Americium (243)	2 96 Cm Cutum (247)	Dilline (of a second seco	98 Cf Callonium (251)	Es Einsteitium (252)	Fermium (257)	101 Md ³² Nectsiwism (258)	102 6 No 32 Nobelium 2 (259)	103 L r Lawrencium (262)	sublime.
	EE 480	/680, Sı	ummer	2006, V	VSU, L.	Starm	an N	∕licroEle	ectroMe	chanic	al Sys	tem	is (ME	MS)					6	j

OIE: We will concentrate primarily	ON SI - MOST COR	nmon MEMS	material
Reasons for Silicon usage:	General	Semicond	actor
 Room Temp performance - good 	Classification	Symbol	Name
High quality silicon diovide	Element	Si	Silicon
riigh quality silicon dioxide	n:	Ge	Germanium
 Grown thermally 	Binary compound	SIC	Silicon carbide
Reduced cost	III-V	AlP	Aluminum phosphide
Ond most shundout slamout an earth		AlAs	Aluminum arsenide
 2nd most abundant element on earth 		AlSb	Aluminum antimonide
 Oxvaen first 		GaN	Gallium nitride
Earth's grupt		GaP	Gallium phosphide
Editins crust		GaAs	Gallium antimonide
 Silica & silicates 		InP	Indium phosphide
• 25%		InAs	Indium arsenide
2370		InSb	Indium antimonide
	II-VI	ZnO	Zinc oxide
		ZnS	Zinc sulfide
• • • • • •		ZnSe	Zinc selenide Zinc telluride
compound semiconductor usag	<u>e:</u>	CdS	Cadmium sulfide
Binary		CdSe	Cadmium selenide
Taman		CdTe	Cadmium telluride
• Ternary		HgS	Mercury sulfide
Quaternary	IV-VI	PbS	Lead sulfide
Pottor algotrical & antical proportion		PhTa	Lead telluride
· Detter electrical & optical properties	Ternary compound	Al,Ga1_As	Aluminum gallium arsenide
Good for	,	ALIn1-As	Aluminum indium arsenide
 High-speed electronics 		GaAs _{1-s} P _x	Gallium arsenic phosphide
Photonic devices		Ga _x In ₁₋₄ As	Gallium indium arsenide
	Output and a second	Ga ₂ In _{1-s} P	Gallium indium phosphide
	Quaternary compound	Al _x Ga _{1-x} AS _y SO _{1-y}	Cutting in it is a second and a second in a

WRIGHT STATE UNIVERSITY	Epitaxy
Substr	ate wafer acts as the seed crystal
 The re thicknee 	gular oriented growth of a <u>single crystal layer(s)</u> with controlled ess and doping over a similar single crystal called the substrate
 Origina superior 	ally used to make high quality materials with characteristics or to those of substrates
 Today layers materia 	, epitaxial techniques are used for the synthesis of ultra thin (monolayers), precise doping profiles or uniformity, and variable al compositions – in addition to low defect density material
 Enhan possib 	ces performance of devices and opens up many new ilities
 Epitax 	y processes occur at temps 30-50% lower than the melting pt.
 Types 	of epitaxial processes:
– Va (M	por phase epitaxy (VPE) – metalorganic vapor phase epitaxy OVPE)
– Liq	uid phase epitaxy (LPE) – rarely used
– Mo (G	lecular beam epitaxy (MBE) – MOMBE, gas source MBE SMBE), atomic layer epitaxy (ALE)
EE 480/680, Summer 2	2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS) 30

WRIGHT STATE	VPE Advantages/Disadvantages	
• Advar	ntages	
– Lo [.]	w temperature process	
– Hiç	gh purity (low defect density) material	
– Re	adily automated for mass production	
– Ab de	ility to grow thin layers with precise composition, doping nsity, thickness O on an atomic scale for advanced systems)	
	en suited to research – has opened new physics	
 Disad 	vantages	
– To ste tha (bu	xic gases are used – must have gas monitors and stainless el plumbing. The exhaust pump system includes a ' <u>scrubber</u> ' it breaks down toxic end products before atmospheric release irn the gases)	
– Re (рі	search systems are <u>expensive</u> , as are many of the precursors urchased as pressurized gases in cylinders or as ' <u>bubbler's</u> '	
 VPE w eleme 	orks well with Si and GaAs (usually not used) – and related ntal and compound semiconductors	
EE 480/680 Summer	2006 WSLLL Starman MicroElectroMechanical Systems (MEMS)	32

WRIGHT STATE UNIVERSITY	<u>esition</u>
 Thermal oxides gate oxide (establish the source to drain conducting channel) <u>Wet oxidation</u> results in <u>rapid growth</u> but the resultant oxide is vere amorphous SiO₂ crystal) <u>Dry oxidation</u> results in a <u>slower growth</u> rate but higher density & (traps/interface states) density SiO₂ → best quality Field oxide isolation of similar devices on the substrate. High quality oxides densities are required to minimize leakage currents Mask for diffusion/implants Surface passivation (CVD) Dielectric layers deposited SiO₂ and Si₃N₄ Used for insulation between conductors, as an ion implantation in passivation layer(s) Polycrystalline silicon (Poly) serves as a gate electrode or a conductive material for multi-lever Metal films Al, silicides, Au for low resistance interconnects/bonding pads 	ery porous (gaps in the & smaller defect with low impurity mask, or as el metallizations
 General requirements be definable by lithography and etching Perform function and be compatible chemically and physical below, and any surface applied above 	ally with the surface
EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)	38

WRIGHT STATE	mple model/growth model:
Volume of one mole: Molecular weight of Si/Der	sity of Si \rightarrow Si $-\frac{M_{si}}{28.09(g/mole)} - 12.06(cm^3/mole)$
	$\rho_{si} = \frac{12.33(g/cm^3)}{2.33(g/cm^3)}$
Molecular weight of SiO ₂ /Densi	ity of SiO ₂ \rightarrow SiO ₂ = $\frac{60.08(g/mole)}{2.21(g/cm^3)}$ = 27.18(cm ³ /mole)
Thickness of Si x Area/Thickness	of SiO ₂ x Area = Volume of 1 mol of Si/volume of 1 mol of SiO ₂
$Vol(Si) = 12.06(cm^3/$	(mole) = 0.44
$\overline{Vol(SiO_2)}^{-}$ $\overline{27.18(cm^3)}$	(mole) -0.44
Equation Format: $N_s(AX_s) = N_s \equiv Dens$	$N_{ox}(AX_{ox})$ $X_s = \frac{N_{ox}X_{ox}}{N_s} = 0.44X_{ox}$ ity of silicon
$A \equiv$ Area	
$X_s \equiv \text{thickr}$	ness of silicon consumed
$N_{ox} \equiv \text{Dens}$	sity of the oxide
$X_{ox} \equiv \text{thick}$	ness of the oxide layer
 Utility – thin oxides (≤ 1000 Ang) thick oxides (≥ 5000 Ang) 	use dry process (perform electrical device functions) use wet process – faster growth, lower quality, used for isolation
EE 480/680, Summer 2006, WSU, L. Starman	MicroElectroMechanical Systems (MEMS) 40

WRIGHT STATE	Polycrystalline Si (Poly or polysilicon)	
PolySi Pyroliza Conduc Contac Usually Dopant	e silane (SiH ₄) at 575-650°C (break apart silane) cting lines for multilevel metallization t for shallow junctions / deposited without dopants (but not always) ts (As, P, B) reduce ρ (resistivity) - added by diffusion or ion impla	antation
Silicon die Dielect Masks Diffusio Cappin Getterin Phosph – i.e. – Inh top Boroph like PR	oxide (CVD films) ric insulator between conducting films for diffusion and ion implantation on source – from doped oxides ig doped films/Si – prevent dopant loss ng impurities – process which removes harmful impurities or defe norous-doped SiO ₂ (P-glass) used as doping source phosphosilicate glass or PSG hibits diffusion of Na, softens & flows at 950-1100°C – creating a s lography →good for subsequent metal, enhances hydrophobicity nosphosilicate glass (BPSG) – flows at 850-950°C – over wafer su	cts mooth ırface
EE 480/680, Summer	2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)	48

WRIGHT STATE	Plasma CVD	
 Plasma CVI Cylindrica a view po Capacitol Samples placed or System is The source Used for Advantage Low te Fast, Disadvant Limited Manu Wafed 	Q al reaction chamber made of quartz or stainless steel (with ort) r (parallel plate) electrodes made of Al lay on the bottom Al capacitor plate (or on a quartz plate in the Al plate) is heated resistively (100-400°C) ce gas flows radially throughout the reaction chamber $SiO_2 \& Si_3N_4$ ges emperatures easy tages ed capacity al load/unload, gas purge, etc r contamination	
EE 480/680, Summer 2	2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)	50

WRIGHT STATE	Dioxide	f SiO ₂ Films			
	Property	Thermally grown at 1000°C	$SiH_4 + O_2$ at 450°C	TEOS at 700°C	SiCl ₂ H ₂ + N ₂ O at 900°C
	Composition	SiO2	SiO ₂ (H)	SiO ₂	SiO ₂ (Cl)
Deposition methods	Density (g/cm3)	2.2	2.1	2.2	2.2
For low-temp deposition (300-500°C)	Refractive index Dielectric strength	1.46	8	1.40	1.40
$SiH \pm O = \frac{450^{\circ}C}{100} SiO \pm 2H$	(10° V/cm) Etch rate (Å /min) (100:1 H ₂ O:HF)	30	60	30	30
$5iII_4 + O_2 5iO_2 + 2II_2$	Etch rate (Å /min) (buffered HF)	440	1200	450	450
$4PH + 5O \xrightarrow{450^{\circ}C} 2PO + 6H$	Step coverage	_	Nonconformal	Conformal	Conformal
Tetraethylorthosilicate (TEOS) – Suitable for Polysilicon gates requirin coverage.	g a uniform i	nsulating lay	er with go	od step	
For Figh-temp deposition (900-C)					
$SiCl_2H_2 + 2N_2O \xrightarrow{900^{\circ}C} SiCl_2H_2 + 2N_2O \xrightarrow{900^{\circ}C} SiCl$	$SiO_2 + 2N_2$	+2HCl			
Deposition gives excellent film uniformity layers over polysilicon	& sometimes	used to dep	osit insula	ting	
NOTE: CVD SiO_2 does not replace thermally grown thermally grown films	n oxides as bes	t electrical pro	perties are	obtained	from
EE 480/680. Summer 2006. WSU. L. Starman MicroElect	roMechanical Svs	tems (MEMS)			5

WRIGHT STATE UNIVERSITY	ide CVD		
$3SiH_4 + 4NH_3 \xrightarrow{700-800^\circ C(1Aim)} Si_3N_4 + 12H_2$	silane + arr	nmonia	
$3SiCl_2H_2 + 4NH_3 \xrightarrow{700-800^\circ C(<1Atm)} Si_3N_4 + 6H_3$	$HCl + 6H_2$ dich	lorosilane +	ammonia
	Properties of sili	con nitride	
	Deposition	LPCVD	Plasma
Good film uniformity and high wafer	Temperature (°C)	700-800	250-350
Defrective index - related to composition	Composition	Si ₃ N ₄ (H)	SiN _x H _v
Refractive index \rightarrow related to composition	Si/N ratio	0.75	0.8-1.2
	Atom % H	4-8	20-25
	Refractive index	2.01	1.8-2.5
	Density (g/cm ³)	2.9-3.1	2.4-2.8
	Dielectric constant	6-7	6-9
	Resistivity (ohm-cm)	10 ¹⁶	$10^6 - 10^{15}$
	Dielectric strength (10 ⁶ V/cm)	10	5
	Energy gap (eV)	5	4-5
	Stress (10 ⁹ dyne/cm ²)	10 T	2C-5 T
EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMech	anical Systems (MEMS)		55

	WRIGHT STATE	SiN Plasma CVI	D	
	Si ₃ N ₄			
•	High tensile	stress ~ 1E10 dyne/cm ²		
•	1 Pa = 1N/n	n² = 1E-5 bar = 10		
	dyne/cm ² =	7.501E-3 torr		
•	Films d > 20	00 nm sometimes crack		
	due to the h	igh stress		
	SiN Plasma	CVD (usually radial flow, parallel plate,	, hot wall reactor)	
	$SiH_4 + NH_3$	$_3 \rightarrow SiNH + 3H_2$ Argon plasma		
	$2SiH_4 + N_2$	$\rightarrow 2SiNH + 3H_2 \text{Reduce silane in}$	a nitrogen discharge	
	The products Plasma dep 	depend strongly on the deposition cor posited films contain large H concentrat	nditions tions	
	• Silicon oxyr • Al oxide, Al	<u>ials</u> nitride (SiON) nitride, Ti oxide high ρ, ε		
	 Polyimides and moisture 	− spin and cure (300-350°C) → planar protection	surfaces, poor thermal stability	
E	E 480/680, Summer 2	2006, WSU, L. Starman MicroElectroMechanical System	ms (MEMS) 56	5

Comparison of	different deposit	ion methods		
	Atmospheric pressure CVD	Low temperature LPCVD	Medium temperature LPCVD	Plasma assisted CVD
Temperature (°C)	300 - 500	300 - 500	500 - 900	100 - 350
Materials	SiO ₂	SiO ₂	Poly-Si	SINH
	P-glass	P-glass BP-glass	SiO ₂ P-glass BP-glass Si ₃ N ₄ SiON SIPOS	SiO ₂ SiON
Uses	Passivation, insulation	Passivation, insulation	Gate metal, insulation	Passivation, insulation
Throughput	High	High	High	Low
Step coverage	Poor	Poor	Conformal	Poor
Particles	Many	Few	Few	Many
Film properties	Good	Good	Excellent	Poor
Low temperature	Yes	Yes	No	Yes

WRIGHT STATE	Metallization	
 Desired p Low resis Easy to f Easy to e Should b Mechanic Surface s Stability f oxidation metalliza No reacti Should n Good de For windopenetrati Silicide – 	broperties of the metallization for ICs, MEMS, & microele stivity orm etch for pattern generation e stable in oxidizing ambients cal stability; good adherence, low stress smoothness throughout processing, including high temp sinter, dry or , gettering, phosphorus glass (or any other material) past tion on with final metal, aluminum ot contaminate devices, wafers, or working apparatus vice characteristics and lifetimes ow contacts – low contact resistance, minimal junction on, low electromigration	wet ssivation,
EE 480/680, Summer	2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)	58

Scan Techniques The sense Scan Techniques Scan Techniq					 Raster scan Resist patterns are written by a beam that moves through a regular mode, vertically oriented Beam scans sequentially over every possible location on the mask and is blanked (turned off) where no exposure is required Pattern must be subdivided into individual addresses Pattern must have a
(a) Raster scan writing sche	me; (b) vector	scan writing scher	mes; and (<i>c</i>)	shapes	evenly divisible by beam address size Vector scan
(a) Raster scan writing sche of electron beam: round, var Some electron resists	me; (<i>b</i>) vector iable, cell pro	scan writing scher jection.	mes; and (<i>c</i>)	shapes	evenly divisible by beam address size Vector scan – Beam directed only to the
(a) Raster scan writing sche of electron beam: round, var Some electron resists Resist	me; (<i>b</i>) vector iable, cell pro	scan writing scher jection.	mes; and (c) Resolution (μm)	shapes 	 minimum incremental interval evenly divisible by beam address size Vector scan Beam directed only to the requested pattern features and jumps from feature to
(a) Raster scan writing sche of electron beam: round, van Some electron resists Resist PBS (Mead Tech.) PMMA (KTI Chem.)	me; (<i>b</i>) vector iable, cell pro Polarity + +	Sensitivity (C/cm ²) @ 20 kV 1.8 × 10 ⁻⁶ 1 × 10 ⁻²	mes; and (c) Resolution (μm) 0.5 <0.1	shapes γ 1.7 2	 minimum incremental interval evenly divisible by beam address size Vector scan Beam directed only to the requested pattern features and jumps from feature to feature rather than scanning the whole chip
(a) Raster scan writing sche of electron beam: round, var Some electron resists Resist PBS (Mead Tech.) PBR-9 (Toray Ind.) FBM-110 (Daikis Ind.)	me; (b) vector iable, cell pro Polarity + + +	Sensitivity (C/cm ²) @ 20 kV 1.8 × 10 ⁻⁶ 1.2 × 10 ⁻⁶ 1.5 × 10 ⁻⁶	mes; and (c) Resolution (µm) 0.5 <0.1 0.5 1.5	27 1.7 2 3 5	 minimum incremental interval evenly divisible by beam address size Vector scan Beam directed only to the requested pattern features and jumps from feature to feature rather than scanning the whole chip Average exposed region is
(a) Raster scan writing sche of electron beam: round, van Some electron resists Resist PBS (Mead Tech.) PBMA (KTI Chem.) EBR-9 (Toray Ind.) FBM-110 (Daikin Ind.) AZ 2400 (Shipley Co.)	Polarity + + + +	Sensitivity (C/cm ²) @ 20 kV 1.8 × 10 ⁻⁶ 1.2 × 10 ⁻⁶ 1.5 × 10 ⁻⁶ 1.5 × 10 ⁻⁶ 2 × 10 ⁻¹	mes; and (c) Resolution (μm) 0.5 <0.1 0.5 1.5 0.5	shapes γ 1.7 2 5 2	 minimum incremental interval evenly divisible by beam address size Vector scan Beam directed only to the requested pattern features and jumps from feature to feature rather than scanning the whole chip Average exposed region is only 20% of the chip area –
(a) Raster scan writing sche of electron beam: round, var Some electron resists Resist PBS (Mead Tech.) PMMA (KTI Chem.) EBR-9 (Toray Ind.) FBM-110 (Dakins Ind.) AZ 2400 (Shipley Co.) COP (Mead Tech.) OCPP (Mead Tech.)	Polarity + + + +	$\begin{array}{c} scan writing scheme(ection.)\\\\\hline \hline & \hline & \\ \hline \\ \hline$	mes; and (c) Resolution (μm) 0.5 <0.1 0.5 1.5 1.5 1.5	x γ 1.7 2 3 5 2 0.8 0.8	 minimum incremental interval evenly divisible by beam address size Vector scan Beam directed only to the requested pattern features and jumps from feature to feature rather than scanning the whole chip Average exposed region is only 20% of the chip area – saves time
(a) Raster scan writing sche of electron beam: round, van Some electron resists Resist PBS (Mead Tech.) PBR-9 (Toray Ind.) FBM-110 (Daikin Ind.) AZ 2400 (Shipley Co.) COP (Mead Tech.) OEBR-100 (Tokyo Okha) SEL-N (Somar Ind.)	Polarity + + + + - - -	Sensitivity (C/cm ²) (@ 20 kV 1.8×10^{-6} 1.2×10^{-6} 1.2×10^{-6} 1.5×10^{-6} 1.5×10^{-6} 1.5×10^{-6} 5×10^{-7} 5×10^{-7} 1×10^{-6}	mes; and (c) Resolution (μm) 0.5 0.5 1.5 1.5 1.5 1.5	x γ 1.7 2 3 5 2 0.8 0.8 0.6	 minimum incremental interval evenly divisible by beam address size Vector scan Beam directed only to the requested pattern features and jumps from feature to feature rather than scanning the whole chip Average exposed region is only 20% of the chip area – saves time
(a) Raster scan writing sche of electron beam: round, var Some electron resists Resist PBS (Mead Tech.) PMMA (KTI Chem.) EBR-9 (Toray Ind.) AZ 2400 (Shipley Co.) COP (Mead Tech.) OEBR-100 (Tokyo Okha) SEL.N (Somer Ind.) GMCIA (AT & T) CMS (Town Sota)	Polarity + + + +	scan writing scher jection. Sensitivity (C/cm ²) @ 20 kV 1.8 × 10 ⁻⁶ 1.2 × 10 ⁻⁶ 1.5 × 10 ⁻⁶ 2.5 × 10 ⁻⁷ 5 × 10 ⁻⁷ 5 × 10 ⁻⁷ 7 × 10 ⁻⁶ 2 × 10 ⁻⁶	Resolution (μm) 0.5 <0.1	x x x x x x x x x x x x x x x x x x x	 minimum incremental interval evenly divisible by beam address size Vector scan Beam directed only to the requested pattern features and jumps from feature to feature rather than scanning the whole chip Average exposed region is only 20% of the chip area – saves time

WRIGHT STATE	Wet Etching				
Mechanism	s for wet chemical etching involve three essential steps				
 Reactants a 	re transported by diffusion to the reacting surface				
 Chemical re 	Chemical reactions occur at the surface				
 Products from 	om the surface removed by diffusion				
 Both agitation 	on & temperature of the etchant solution will influence the etch rate				
 Etching performance rate) or spra 	formed by immersion (requires agitation to ensure etch uniformity and consistent etch aying the wafers with the etchant solution				
 Spray etchir 	ng replacing immersion etching				
 Increase 	 Increases the etch rate 				
 Increase 	 Increases uniformity by constant fresh supply of etchant to wafer 				
Etch rate ur	iformity given by:				
Etch rate	uniformity (%) = <u>(maximum etch rate – minimum etch rate)</u> x 100% maximum etch rate + minimum etch rate				
(1) Reactants (2)	(3) Products				
Sem	Solution				
EE 480/680, Summer	2006, WSU, L. Starman Microglance Mc 2010: Bassice macing simon in wet chemical etching?				

Etchar	Etchants for Insulators and Conductors				
Material	Etchant Composition	Etch Rate			
	28 ml HF				
SiO ₂	170 ml H2O Buffered HF	1000 Å/min			
	113 g NH ₄ F				
	15 ml HE				
	10 ml HNO3 P-Etch	120 Å/min			
	300 ml H-O				
SinNe	Buffered HF	5 Å/min			
5131.14	H ₃ PO ₄	100 Å/min			
Al	1 ml HNO3	350 Å/min			
	4 ml CH ₃ COOH				
	4 ml H ₃ PO ₄				
100 m 200	1 ml H ₂ O				
Au	4 g K l	1 μm/min			
	40 ml H ₂ O				
Мо	5 ml H ₃ PO ₄	0.5 μm/min			
	2 ml HNO3				
	4 ml CH3COOH				
	150 ml H ₂ O				
Pt	1 ml HNO3	500 A/min			
	7 mi HCi 8 ml H-O				
W	34 g KH ₂ PO ₄	1600 Å/min			
	13.4 g KOH				
	33 g K ₃ Fe(CN) ₆				
	H ₂ O to make 1 liter				

T STATE Material	Etchant	Remark	
SITY SIO2	28 ml HF 170 ml H ₂ O 113 g NH ₄ F	BHF, 1000-2500 Ä/min at 25°C	
	15 ml HF 10 ml HNO ₃ 300 ml H ₂ O	P-etch, 128 Å/min at 25°C	
	I ml BHF 7 ml H ₂ O	800 Å/min	
BSG	1 ml HF 100 ml HNO ₃ 100 ml H ₂ O	R-etch, 300 Å/min for 9 mole % B_2O_3 , 50 Å/min for SiO ₂	
	4.4 ml HF 100 ml HNO ₃ 100 ml H ₂ O	S-etch, 750 Å/min for 9 mole % B_2O_3 , 135 Å/min for SiO $_2$	
PSG 3	28 ml HF 170 ml H ₂ O 113 g NH ₄ F	BHF, 5500 Å/min for 8 mole % P_2O_8	
	15 ml HF 10 ml HNO3 300 ml H2O	P-etch, 34,000 Å/min for 16 mole % P ₂ O ₅ , 110 Å/min for SiO ₂	
	1 ml BHF 7 ml H ₂ O	800 Â/min	
Si ₃ N ₄	HF	140 Å/min. CVD at 1100°C 750 Å/min. CVD at 900°C 1000 Å/min. CVD at 800°C	
	28 ml HF 170 ml H ₂ O 113 g NH ₄ F	BHF, 5-10 Å/min	
	H ₃ PO ₄	100 Å/min at 180°C	
Polysilicon	6 ml HF 100 ml HNO, 40 ml H ₂ O	8000 Å/min, smooth edges	
	1 ml HF 26 ml HNO3 33 ml CH3COOH	1500 Å/min	
SIPOS	1 ml HF 6 ml H ₂ O	2000 Å/min for 20% O2 film	

WRIGHT STATE UNIVERSITY	
 Rate determining step (slowest reaction step) Rule of thumb – reaction rates double with every 10°C of increased temperature Thus ±1°C can change etch rates ~10%, and temperature control is important in etching reactions Etching of crystalline silicon Wet etching proceeds by oxidation, followed by the dissolution of the oxide by a chemical reaction Common etchants for silicon 	
HNO_3 (nitric acid) + HF (hydrofluoric acid) in H_2O or CH_3COOH (acetic acid)	
Si + $2H^+ \rightarrow Si^{2+}$ (auto catalytic process) higher oxidation state Oxidizing specie (OH ⁻) formed by the dissociation of H ₂ O	
$H_2O \square OH^- + H^+$	
$Si^{2+} + 2OH^- \rightarrow Si(OH)_2 \rightarrow SiO_2 + H_2$ liberates H ₂	
The HF is used to dissolve SiO ₂	
$SiO_2 + 6HF \rightarrow H_2SiF_6 + 2H_2O$ Takes place in MEMS process to remove SiO ₂	
Soluble in water	
EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)	94

Material	Etchant	D				
Al	1 ml Hel 2 ml HeO	80°C, fine line, can be used with gallium arsenide				
	4 ml H ₃ PO ₄ 1 ml HNO ₃ 4 ml CH ₃ COOH 1 ml H ₂ O	350 Å/min. fine line, will attack gallium arsenide				
	16–19 ml H ₃ PO ₄ I ml HNO ₅ 0–4 ml H ₂ O	1500–2500 Å/min, will attack gallium arsenide	Мо	5 ml H ₃ PO ₄ 2 ml HNO ₃ 4 ml CH ₃ COOH 150 ml H ₂ O		0.5 µm/min, resist mask can be used
	0.1 M K ₂ Br ₄ O ₇ 0.51 M KOH 0.6 M K ₃ Fe(CN) ₆	1 μm/min, pH 13.6, no gas evolved during etching		5 ml H ₃ PO ₄ 3 ml HNO ₃		Polishing etch
Au	3 ml HCl 1 ml HNO, 4 g Kl 1 g l,	Aqua regia, 25–50 µm/min 0.5–1 µm/min, can be used with resist		2 ml H ₂ O 11 g K ₃ Fe(CN) ₆ 10 g KOH 150 ml H ₂ O		1 μm/min
Ag	40 ml H ₂ O 1 ml NH ₄ OH 1 ml H ₂ O ₂ 4 ml CH ₄ OH	3600 Å/min, can be used with resists, must be rinsed rapidly after etching	w	34 g KH ₂ PO ₄ 13.4 g KOH 33 g K ₃ Fe(CN) ₆ H ₂ O to make 1 liter	2	1600 Å/min. high resolution. resist mask can be used
Cr	I ml HCI I ml glycerine	800 Å/min. needs depassivation	Pt	3 ml HCl 1 ml HNO3	11	Aqua regia. 20 µm/min. precede by a 30 s immersion in HF
	1 ml HCl 9 ml saturated CeSO ₄ solution 1 ml, 1 g NaOH in 2 ml H ₂ O	800 Å/min, needs depassivation 250-1000 Å/min, no		7 ml HCl 1 ml HNO3 8 ml H ₂ O		400-500 Å/min. 85°C
	3 ml, 1 g K3Pe(CN) ₆ in 3 ml H ₂ O	depassivation, resist mask can be used	Pd	1 ml HCl 10 ml HNO3 10 ml CH3COOH		1000 Â/min
				4 g Kl 1 g I ₂ 40 ml H-O		1 μm/min. opaque. must be rinsed before visual inspection

WRIGHT STATE	Silicon Diffusion Implementation				
• 800-1	200°C				
P-type (B)					
– BN	– BN - boron nitride (solid)				
– BE	– BBr ₃ - boron bromide (liquid)				
– B ₂ H ₆ - diborane (gas)					
 N-typ 	e (As/P)				
– As	S_2O_3 - arsenic trioxide (solid)				
– P ₂	O5 - phosphorous pentoxide (solid)				
 AsCl₃ - arsenic trichloride 					
 – POCl₃ - phosphorous oxychloride 					
– AsH ₃ - arsine					
$-PH_3 - phosphine$					
All dopants have solid solubilities					
_ > !	5E20 cm ⁻³ at the temperatures of interest				
EE 480/680, Summer 2	2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)	102			

