

MEMS FabricationMicromachining consists of
four separate areas:0. Substrates and Dopants – Starting point0. Patterning - Lithography0. Additive Processes - Deposition0. Subtractive Process - EtchingMontanti Lithography with0. Substrates and Dopants0. Additive Processes0. Substrates and Dopants0. S

MEMS Fabrication

- Micromachining combines Lithography, Thin Film Processing, and Sacrificial Etching to form mechanical devices
- Three Types of Fabrication Processes
 - Surface Micromachining
 - Bulk Micromachining
 - Microforming

EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

GENERAL PROPERTIES @ 300 K	Si	Ge	GaAs	Matanial	Yield	Knoop	Young's	Density	Thermal	Thermal Expansion
Atomic Weight	28.09	72.60	144.63	Materia	(10 ⁹ N/m ²)	(kg/mm ²)	(GPa)	(g/cm ³)	(W/cm•K)	Coefficient (10%K)
Density (g/cm3)	2.328	5.3267	5.32	*Diamond	53	7,000	1,035	3.5	20	1
Atomic Density (atoms/cm3)	5.0×10^{22}	4.42×10^{22}	4.42×10^{22}	*SiC	21	2,480	700	3.2	3.5	3.3
Lattice Constant Å	5.43095	5.64613	5.6533	*TiC	20	2,470	497	4.9	3.3	6.4
THERMAL BROBERTIES				*Al ₂ O ₃	15.4	2,100	530	4	0.5	5.4
THERMAL PROPERTIES				*Jime	12.6	3,480	385	3.1	0.19	0.8
Melting Point (°C)	1,415	937	1,2.58	SiO ₂ (fibers)	8.4	820	73	2.5	0.003	0.55
Specific Heat (J/g•K)	0.7	0.31	0.35	*Si	7	850	190	2.3	1.57	2.33
Linear Coeff. of Thermal Expansion ($\alpha = \Delta L/(L \Delta T)$, in K ⁻¹)	$2.6 imes 10^{-6}$	$5.8 imes 10^{-6}$	6.86×10^{-6}	Steel (max strength)	4.2	1,500	210	7.9	0.97	12
Thermal Conductivity (at 300 K) (W/cm+K)	1.5	0.6	0.46	W	4	485	410	19.3	1.78	4.5
Thermal Diffusivity (cm2/a)	0.9	0.36	0.24	Steel	2.1	660	200	7.9	0.329	17.3
incruta Direttivity (cal-53)	0.7	0.10	0.24	Mo	2.1	275	343	10.3	1.38	5
ELECTRICAL PROPERTIES				AI	0.17	130	70	2.7	2.36	25
Energy Gap (eV) at 300 K	1.12	0.66	1.424							
Intrinsic Carrier Concentration (cm-3)	1.45×10^{10}	2.4×10^{13}	1.79×10^{6}	Table of med	hanical pro	perties of a	ilicon an	d other i	naterials. Fi	om Peters
Intrinsic Resistivity (Ω*cm)	2.3×10^{5}	47	108	materials and	are not nece	ssarily use	ful for am	orphous	or polycrystal	line forms.
Dielectric Constant (DC only)	11.9	16.0	13.1	L					1.7.7	
* Breakdown Field (V/cm)	=3 × 10 ⁵	~105	-54×10^{5}							
* Minority Carrier Lifetime (s)	2.5×10^{-3}	10-3	=10-8							
* Electron Mobility (cm2/V+s)	1 500	3 900	8 500							
* Hole Mobility (cm ² /Vec)	450	1,000	400		Ko	vacs, l	Micro	mach	ined	
Hole Mobility (clit-14-8)	450	1,900	400		T	1	C	1	1 1000	

ticrosensor technology [4.15, 4.	16]. Values a	re taken at 29	3 K where approp	riate.	microsensor technology [4.16].	s of sor	ne comr	non meta	llic pass	we mater	nais used
Material	: Si	GaAs	SiO ₂	Si ₃ N ₄	h	faterial:	Al	Au	Cr	Ti	W
Doneity	2 220	(c) 5 216	(quartz)	2.440	Property:						
p _m (kg/m ³)	2,550	5,316	1,544	3,440	Density, ρ _m (kg/m ³)		2,699	19,320	7,194	4,508	19,254
T _{mp} (°C)	1,410	1,910	1,660	1,900	Melting point, T (°C)		660	1,064	1,875	1,660	3,422
Bolling point, T _{bp} (°C)	2,480	•	2,500	-	Boiling point,		2,467	2,967	2,482	3,313	5,727
hermal conductivity, κ (W/m/K)	168	47	6.5, 11	19	Electrical conductivity,		377	488	79	26	183
Specific heat capacity, c _p (J/K/kg)	678	350	730	•	σ (10 ³ S/cm) Temperature coefficient of res	istance,	43	34	30	38	
Temperature expansivity, α _t (10 ⁻⁶ /K)	2.6	5.7	7, 12	0.8	α _r (10 ⁻⁴ /K) Work function, φ(eV)		4.3	5.1	4.5	4.3	4.6
Dielectric constant, E,	11.7	12	4.5, 4.3	7.5	Thermal conductivity, x (W/m/K)		236	319	97	22	177
Young's modulus, E (GPa)	190	°, •	380	380	Specific heat capacity, <, ([/K/kg)		904	129	448	522	134
field strength, (GPa)	6.9	·	14	14	Linear expansivity, 0. (10 ⁻⁶ K ⁻¹)		23	14	4.9	8.6	4.5
					Young's modulus, E (GPa)		70	78	279	-40	411
					Yield strength,		50	200	-	480	~750
					Poisson's ratio, v		0,35	0.44	0.21	0.36	0.28

							Table 2.1	Properties of	deposited	and therm	ally grown o	xide films (Sze 1985)	
able 4.6 Some imp	ortant prope	rties of a	ctive materia	ls used in mi	rosensors [4	.16].	Property	Composition	Step co	verage	Density ρ	Refractive	Die	lectric
Thermal	Pm	T _{mp}	σ (C ()	к (N (т. (М)	α ₁	Eg	Thermally grown	SiO			(g/cm ⁻)	1.46	strengt	n (v/c
D	(kg/m ²)	17(0	(5/cm)	(W/m/K)	(10 · / K)	(ev)	at 1000 °C	5101			2.2	1.40		10
Cd5	4,820	1,750		-	-	2.42	Deposited by SiH ₂ ± O ₂ at	SiO ₂ (H)	Noncon	formal	2.1	1.44	8 ×	10-6
PbS	7,500	1,114		3		0.37	450°C							
Radiation	ρ_m (kg/m ³)	T _{mp}	or (S/cm)	к (W/m/K)	α ₁ (10 ⁻⁶ /K)	Eg (eV)	Deposited by TEOS at	SiO ₂	Conform	nal	2.2	1.46	1	0-5
Si	2.330	1.410	4×10^{-2}	168	2.6	1.11	700 C Danasitad hu	80	Conform	nal	2.2	1.46		0-5
Ge	5,323	937	3 ×10 ⁻⁴	67	5.7	0.67	SiCl ₂ H ₂ +	3102	Comon	nai	2.2	1.40	1	0
GaAs	5,316	1,510	10-8	47	5.7	1.35	N2O at 900 °C							
Mechanical	Pm	Tme	Velocity	Delay	α	K ²								
	(kg/m ³)	(°C)	(m/s)	(ppm/°C)	(10 ⁻⁶ /K)	(%)	т	able 2.2 Prop	erties of s	ome select	ed electroni	c materials		
Quartz (AT-cut)	1,544	1,880	5,100	2.8	0.8	1.43	Material property	Si	GaAs	SiO	Si+N	AL	Au	1
Quartz (ST-cut)	1,544	1,880	4,990	33		1.89								
LiNbO3 (x-axis)			4,802	59	-	16.7	Density (kg/m ³)	2330	5316	1544	3440	2699	19320	45
Magnetic	ρm	Tmp	σ.	c _p	T _c	μ	Melting point (°C)	1410	1510	1880	1900	660	1064	16
	(kg/m ³)	(°C)	(S/cm)	(J/K/kg)	(K)	(103)	Electrical	4×10^{-5}	10-11	-	-	377	488	
Fe (pure)	7,874	1,535	105	449	1,043	1,500	(10 ⁸ W ⁻¹ cm ⁻¹)							
NiFe alloy (50:50)	8,200	-	3×10^{4}	-400	798	75	Thermal	168	47	6.5-11	19	236	319	
CoFe alloy (50:50)	8,150	-	2×10^{4}	~400	1,253	7	conductivity							
Chemical	ρ _m	T_{mp}	σ	Sensitivity	α	Eg	(W/m/K)							
	(kg/m ³)	(°C)	(S/cm)	(ppm)	(/K)	(eV)	Dielectric constant	11.7	12	4.3-4.5	7.5	-	-	
SnO ₂ (c)	6,950	1,360	Low	1 - 1,000	-ve	3.45	Young's modulus (GPa)	190	-	380	380	70	78	^
PbPc (c)	1,950	-600	Very low	> 0.001	-ve	0.7	Viald strength	69	_	14	14	50	200	4
Poly(pyrrole)	~1,500	~200	10-4-10+2	0.1 - 1,000	-ve	Small	(GPa)	0.9		14	14	50	200	

Microelectronics Fabrication

- Film Formation (thin $< 5\mu$ m, thick $< 50 \mu$ m)
 - Sputtering
 - The physical removal of atoms from a target by energized ions (plasma) and reformation of a film on a substrate
 - · Amorphous thin films, conformal/nonconformal coatings
 - High vaccum
 - · Most materials can be sputtered: metals, organics, inorganics
 - Electroplating
 - The electrochemical reaction of a solution, on a seed surface, to form a metal film
 - Amorphous thick and greater films
 - Spin Casting
 - Thin film material dissolved in a volatile liquid solvent, spin coated onto a substrate to form films
 - · Low quality, but convenient amorphous thin or thick films
 - + Room temperature application, $\approx 100~^\circ\text{C}$ cure temperatures
 - Organic polymers, inorganic glasses

EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

(Yield Strength (10 ¹⁰ dyne/cm ²)	Knoop Hardness (kg/mm ²)	Young's Modulus (10 ¹² dyne/cm ²)	Density (gr/cm ³)	Thermal Conductivity (W/cm°C)	Thermal Expansion (10 ⁻⁶ /°C)
*Diamond	53	7000	10.35	3.5	20	1.0
SiC	21	2480	7.0	3.2	3.5	3.3
TiC	20	2470	4.97	4.9	3.3	6.4
Al ₂ O ₃	15.4	2100	5.3	4.0	0.5	5.4
Si ₃ N ₄	14	3486	3.85	3.1	0.19	0.8
Iron	12.6	400	1.96	7.8	0.803	12
SiO ₂ (fibers)	8.4	820	0.73	2.5	0.014	0.55
Si	7.0	850	1.9	2.3	1.57	2.33
Steel	4.2	1500	2.1	7.9	0.97	12
N	4.0	485	4.1	79.3	1.78	4.5
Stainless Steel	2.1	660	2.0	7.9	0.329	17.3
мo	2.1	275	3.43	10.3	1.38	5.0
A 1	0.17	130	0.70	2.7	2.36	25

	•	,		
Formulation	Temp. (°C)	Etch Rate (µm/min)	(100)/(111) Etch Ratio	Masking Films (etch rate)
KOH (44 g) Water, Isopropanol (100 ml)	85	1.4	400:1	SiO_2 (1.4 nm/min) Si_3N_4 (negligible)
KOH (50 g) Water, Isopropanol (100 ml)	50	1.0	400:1	Same as above
KOH (10 g) Water, Isopropanol (100 ml)	65	0.25 - 1.0	-	$SiO_2 (0.7 \text{ nm/min})$ $Si_3N_4 (negligible)$
 thylene diamine Pyrocatecho EDP (750 ml) Pyrocatechol (120 g) Water (100 ml) At 115 °C 0.75 μm/min (100) 	ol (EDP)	 TetraM W Ex A 22% by ap ap 	lethyl Ammo 'ide Availabil xcellent Mas l selectivity v y wt. TMAH pprox. 1.0 μm pprox. 25/1 (1	nium Hydroxide (TMAI lity king Selectivity (> 1000 'aries with solution ph in DIW at 90 °C //min 00)/(111) etch ratio

Silicon Nitride (Si₃N₄)

- Excellent Dielectric
- Requires Boiling Phosphoric Acid for a wet etch
- Excellent barrier for Alkali ions

	Si ₃ N ₄ Properties										
Deposition Method	Deposition Temp. (°C)	Si/N Ratio	Density (g/cm ³)	Refractive Index	Stress (MPa)	Dielectric Strength (10 ⁶ V/cm)					
LPCVD	700 - 800	0.75	2.9 to 3.1	2.01	1,00 T	10					
PECVD	< 350	0.8 to 1.2	2.4 to 2.8	1.8 to 2.5	200 C to 500 T	5					
EE 480/680, Summ	ier 2006, WSU, L.	Starman	MicroElectroMech	anical Systems (ME	MS)	101					

Comparing iMEMS and MUMPS

Process	iMEMS	poly MUMPS
Masks	27	8
Processing Steps	> 410	>70
Structural Layers	1	2
Structural Layer		
Types	Polysilicon	Polysilicon
Layer Thickness	2 - 4	1.5 - 2
Min Feature Size	1	2
Mechanical	Yes	Yes
Integrated Cicruits	Yes	No
EE 480/680, Summer 2006, WSU, L. Starman	MicroElectroMechanical Systems	(MEMS) 12

P	Process Comparison									
	Surface Micromachining	Bulk Micromachining	Microforming							
x,y dim.	< 1 µm	> 5 µm	$> 2 \ \mu m$							
z dim	< 5 µm	> 20 µm	$> 20 \ \mu m$							
# Layers	2-3 Releasable	1-2	1 Releasable							
IC Compatibility	Good	Med-Poor	Good							
Material Selection	Large	Bulk Materials	Metals							
Aspect Ratio	< 5	approx. 100	approx. 100							
EE 480/680, Summer 2006, WSU	J, L. Starman MicroElectro	Mechanical Systems (MEMS)	201							

	Process	Comparis	on	
Process	iMEMS	poly MUMPS	metal MUMPS	SOI MUMPS
Masks	27	8	6	4
Processing Steps	> 410	>70	> 50	>35
Structural Layers	1	2	2	1
Structural Layer			Nickel, Poly Nitride	
Types	Polysilicon	Polysilicon	Poly-Stack	Bulk Silicon
Layer Thickness	2 - 4	1.5 - 2	20,2	25
Min Feature Size	1	2	8	2
Mechanical	Yes	Yes	Yes	Yes
Integrated Cicruits	Yes	No	No	No
Available Die Size	N/A	1 cm X 1 cm	1 cm X 1 cm	1 cm X 1 cm
Cost per die site	N/A	\$ 4,600.00	N/A	\$ 7,500.00
FF 100/000 0				202