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Newton's Second Law of Motion

Vector Mechanics for Engineers: Dynamics

Newton’s Second Law of Motion

Kinematics: Relationships between time, position, velocity and acceleration

Kinetics: Relationships between forces on a body, the mass of the body, and
the resulting motion of the body

In Statics, the equilibrium of a particle is given by:
Z F=0

This is a special case of Newton’s 2" Law:

Zﬁ=mc’i

@

= Where the acceleration is in the same direction as the resultant force and the
’ mass of the particle is constant. @ must be measured from a fixed frame of
= reference. For most engineering problems, it can be attached to the earth.
. For motion between planets, it must be attached to the sun (Newtonian

frame of reference).
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Systems of Units

-: Vector Mechanics for Engineers: Dynamics

Systems of Units

* Of the units for the four primary dimensions (force,
1 mass, length, and time), three may be chosen arbitrarily.
=i f—— The fourth must be compatible with Newton’s 2nd Law.

* International System of Units (S1 Units): base units are
the units of length (m), mass (kg), and time (second).

a=9.81 m/s2
W=981 N The unit of force is derived,
IN =(]kg)[1_]=]
S2 52
= 11bn)
Q 1= 32.2 ft/s

-1, * US. Customary Units (English Units): base units are the
units of force (Ib), length (m), and time (second). The
i unit of mass is derived,

a=1 ft/s2 2
llbm=$ Islug = L =llb'S

32.2ft/s2 1ft/s2 ft

Sisg
(=11b-s¥ft)
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Equations of Motion: Rectangular Components

Vector Mechanics for Engineers: Dynamics

Equations of Motion: Rectangular Components

« Newton’s second law Y. F = ma

* Can use scalar component equations, e.g., for
rectangular components,

Z(Fxf+Fyf+FZE)=m(ax?+ay}’+azl€)
2 Fy =ma, > F,=ma, )} F,=ma,
D =mk Y F,=my Y F, =mz

AAEAIYIVIALE
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Equations of Motion: Rectangular Components

: Vector Mechanics for Engineers: Dynamics

Equations of Motion: Rectangular Components

Rectangular components:
Fe=mx, F,=my, F,=mzZ
Or:

. Fx . Fy . Fz
X==— y=—=, 7 = —
m m m

The components of the acceleration vector can be found by knowing the
mass of the particle and the components of the resultant force vector acting
on the particle.

For the special case of projectile motion, neglecting air resistance, the only
force on the projectile is its weight.

O Z ﬁ - (“W)j

& The components of acceleration for this case are:

E g9, P E=j
S o

These equations can be integrated w.r.t. time to obtain velocity and
displacement as functions of time.
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Free-Body Diagrams and Kinetic Diagrams

Vector Mechanics for Engineers: Dynamics

Free-Body Diagrams and Kinetic Diagrams
The free body diagram is the same as you have done in statics; we
will add the kinetic diagram in our dynamic analysis.
1. Isolate the body of interest (free body)
2. Draw your axis system (e.g., Cartesian, polar, path)
3. Add in applied forces (e.g., weight, 225 Ib pulling force)
4. Replace supports with forces (e.g., normal force)
5. Draw appropriate dimensions (usually angles for particles)

295 N 225 N .
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Free-Body Diagrams and Kinetic Diagrams

Vector Mechanics for Engineers: Dynamics

Free Body Diagrams and Kinetic Diagrams

Put the inertial terms for the body of interest on the kinetic diagram.

1. Isolate the body of interest (free body)
2. Draw in the mass times acceleration of the particle; if unknown,
do this in the positive direction according to your chosen axes

225 N
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Normal and Tangential Coordinates

¢ Vector Mechanics for Engineers: Dynamics

Normal and Tangential Coordinates

* Newton’s second law: ZF =mad

 For tangential and normal components,

Srema Y =ma,
Sren(a) Za=n(5)

where v is the speed of the particle, and p is the local radius of curvature

n\
g na,
. /f /t

ma,

m
m

o
Graw 12-9
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Radial and Transverse Coordinates

Vector Mechanics for Engineers: Dynamics

Radial and Transverse Coordinates
 Consider particle at 7 and 6, in polar coordinates,
> F.=ma, = m(i‘—ré’z)
S Fy = may = m(rd +2i-0)

Graw| 12-10
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Free-Body Diagrams and Kinetic Diagrams

: Vector Mechanics for Engineers: Dynamics

Free Body Diagrams and Kinetic Diagrams

Draw the FBD and KD for the collar B. Assume
there is friction acting between the rod and collar,
motion is in the vertical plane, and @1s increasing
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Free-Body Diagrams and Kinetic Diagrams

: Vector Mechanics for' Engineers: Dynamics

Free Body Diagrams and Kinetic Diagrams

1. Isolate body

Axes

Applied forces

Replace supports with forces

Dimensions
Kinetic diagram

ee\/ e
r

P e b 2
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Linear Momentum of a Particle

Vector Mechanics for Engineers: Dynamics

Linear Momentum of a Particle

* Replacing the acceleration by the derivative of the velocity

yields .
. %
F=m—
2 dt
= i(mfi)— d_f
i i mv

L = linear momentum of the particle

 Linear Momentum Conservation Principle:
If the resultant force on a particle is zero, the linear momentum

of the particle remains constant in both magnitude and direction.

12-13
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Angular Momentum of a Particle

—: Vector Mechanics for Engineers: Dynamics

Angular Momentum of a Particle

» Consider particle at 7 and 6, in polar
coordinates,

Y F,.=ma, = m(i"—ré"z)
> Fyp =mag = m(ré + 2?9)

* This result may also be derived from
conservation of angular momentum,

Hp = mr*0
r> Fo= %(mrzg)
= m(rzé + 2rf9)

ZF9 = m(r¢9+2r0)
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Angular Momentum of a Particle

Vector Mechanics for Engineers: Dynamics

Angular Momentum of a Particle

- H 0 =Fx mV = moment of momentum or the angular
momentum of the particle about O.

* H, is perpendicular to plane containing 7 and m¥
7 Fi k Hp =rmVsing
< HO: X y A =rmveg v9=Vsinq’)

mv, mv, mv, —1 vg =716

x ¥
» Derivative of angular momentum with respect to time,
I_.{fo —FxmV +FxmV =VxmV +Fxma
=rx> F
SN
* [t follows from Newton’s second law that the sum of
the moments about O of the forces acting on the

particle is equal to the rate of change of the angular
momentum of the particle about O.
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Conservation of Angular Momentum

Vector Mechanics for Engineers: Dynamics

Conservation of Angular Momentum

* When only force acting on particle is directed
toward or away from a fixed point O, the particle
is said to be moving under a central force.

» Since the line of action of the central force passes
through O, Y M, =Hp =0 and

#xmV = H, = constant

 Position vector and motion of particle are in a
plane perpendicular to H .

» Magnitude of angular momentum,
H =rmV sin ¢ = constant

- rom VO sin ¢0

or Hp= mr>6 = constant

H .
20—y 2h=h= ,
m unit mass

angular momentum
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Newton's Law of Gravitation

Vector Mechanics for Engineers: Dynamics

Newton’s Law of Gravitation

 Gravitational force exerted by the sun on a planet or by
the earth on a satellite is an important example of
gravitational force.

» Newton's law of universal gravitation - two particles of
mass M and m attract each other with equal and opposite
force directed along the line connecting the particles,

FogMm
r2

G = constant of gravitation

-12 I‘l’l3

-9 ft4
=66.73x10 5 =34.4x10 2
kg-s Ib-s

 For particle of mass m on the earth’s surface,

W=mM%f=mg g=9.81%=32.2£2
R S S

AAEAIYIVIALE
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Problem 12-5
12.5 A hockey player hits a puck so that it comes to rest in 9 s after

sliding 30 m on the ice. Determine (a) the initial velocity of the
puck, (b) the coefficient of friction between the puck and the ice.
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Problem 12-7

'2 7 In anticipation of a long 7° upgrade, a bus driver accelerates at a
constant rate of 3 ft/s* while still on a level section of the highway.
Knowing that the speed of the bus is 60 mi/h as it begins to climb
the grade and that the driver does not change the setting of his
throttle or shift gears, determine the distance traveled by the bus
up the grade when its speed has decreased to 50 mi/h.
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Problem 12-9

12.9 A 20-kg package is at rest on an incline when a force P is applied
to it. Determine the magnitude of P if 10 s is required for the
package to travel 5 m up the incline. The static and kinetic coef-
ficients of friction between the package and the incline are both
equal to 0.3,
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Problem 12-11

12.11 The two blocks shown are originally at rest. Neglecting the masses
of the pulleys and the effect of friction in the pulleys and between
block A and the horizontal surface, determine (a) the acceleration
of each block, (b) the tension in the cable.
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Problem 12-36

ll2.36 During a hammer thrower’s practice swings, the 7.1-kg head A of
the hammer revolves at a constant speed v in a horizontal circle
as shown. If p = 0.93 m and 6 = 60°, determine (a) the tension
in wire BC, (b) the speed of the hammer’s head.

Fig. P12.36
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Problem 12-45

12.45 A 60-kg wrecking ball B is attached to a 15-m-long steel cable AB
and swings in the vertical arc shown. Determine the tension in the
cable (a) at the top C of the swing, (b) at the bottom D of the
swing, where the speed of B is 4.2 m/s.

Fig. P12.45
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Problem 12-55

12.55 A small, 300-g collar D can slide on portion AB of a rod which is
bent as shown. Knowing that @ = 40° and that the rod rotates
about the vertical AC at a constant rate of 5 rad/s, determine the
value of r for which the collar will not slide on the rod if the effect
of friction between the rod and the collar is neglected.
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Problem 12-66

12.66 Rod OA rotates about O in a horizontal plane. The motion of the
300-g collar B is defined by the relations r = 300 + 100 cos (0.5 7t)
and = m(t* — 3t), where r is expressed in millimeters, ¢ in seconds,
and 6 in radians. Determine the radial and transverse components
of the force exerted on the collar when (@)t = 0, (b) t = 0.5 s.
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Problem 12-78

12.78 The radius of the orbit of a moon of a given planet is equal to
twice the radius of that planet. Denoting by p the mean density
of the planet, show that the time required by the moon to com-
plete one full revolution about the planet is (247/Gp)"’*, where
G is the constant of gravitation.
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