ME 1020 Engineering Programming with MATLAB

Handout 09b

Homework 9b Assignment: 9.22, 9.23, 9.24, 9.25, 9.28

22. Plot the solution of the equation

$$
6 \dot{y}+y=f(t)
$$

if $f(t)=0$ for $t<0$ and $f(t)=15$ for $t \geq 0$. The initial condition is $y(0)=7$.

Use the ode45 Solver for this problem.
23. The equation for the voltage y across the capacitor of an $R C$ circuit is

$$
R C \frac{d y}{d t}+y=v(t)
$$

where $v(t)$ is the applied voltage. Suppose that $R C=0.2 \mathrm{~s}$ and that the capacitor voltage is initially 2 V . Suppose also that the applied voltage goes from 0 to 10 V at $t=0$. Plot the voltage $y(t)$ for $0 \leq t \leq 1 \mathrm{~s}$.

Use Euler's Method to solve this problem.
24. The following equation describes the temperature $T(t)$ of a certain object immersed in a liquid bath of constant temperature T_{b}.

$$
10 \frac{d T}{d t}+T=T_{b}
$$

Suppose the object's temperature is initially $T(0)=70^{\circ} \mathrm{F}$ and the bath temperature is $T_{b}=170^{\circ} \mathrm{F}$.
a. How long will it take for the object's temperature T to reach the bath temperature?
b. How long will it take for the object's temperature T to reach $168^{\circ} \mathrm{F}$?
c. Plot the object's temperature $T(t)$ as a function of time.

Use Euler's Method to solve this problem.
25.* The equation of motion of a rocket-propelled sled is, from Newton's law,

$$
m \dot{v}=f-c v
$$

where m is the sled mass, f is the rocket thrust, and c is an air resistance coefficient. Suppose that $m=1000 \mathrm{~kg}$ and $c=500 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$. Suppose also that $v(0)=0$ and $f=75,000 \mathrm{~N}$ for $t \geq 0$. Determine the speed of the sled at $t=10 \mathrm{~s}$.

Use the ode 15 s Solver for this problem.

27. The equation for the voltage y across the capacitor of an $R C$ circuit is

$$
R C \frac{d y}{d t}+y=v(t)
$$

where $v(t)$ is the applied voltage. Suppose that $R C=0.2 \mathrm{~s}$ and that the capacitor voltage is initially 2 V . Suppose also that the applied voltage is $v(t)=10\left[2-e^{-t} \sin (5 \pi t)\right] \mathrm{V}$. Plot the voltage $y(t)$ for $0 \leq t \leq 5 \mathrm{~s}$.
28. The equation describing the water height h in a spherical tank with a drain at the bottom is

$$
\pi\left(2 r h-h^{2}\right) \frac{d h}{d t}=-C_{d} A \sqrt{2 g h}
$$

Suppose the tank's radius is $r=3 \mathrm{~m}$ and the circular drain hole has a radius of 2 cm . Assume that $C_{d}=0.5$ and that the initial water height is $h(0)=5 \mathrm{~m}$. Use $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.
a. Use an approximation to estimate how long it takes for the tank to empty.
b. Plot the water height as a function of time until $h(t)=0$.

Use the Euler Method to solve this problem.

29. The following equation describes a certain dilution process, where $y(t)$ is the concentration of salt in a tank of freshwater to which salt brine is being added.

$$
\frac{d y}{d t}+\frac{5}{10+2 t} y=4
$$

Suppose that $y(0)=0$. Plot $y(t)$ for $0 \leq t \leq 10$.

