ME 1020 Engineering Programming with MATLAB

Chapter 5 Homework Solutions: 5.4, 5.7, 5.10, 5.14, 5.17, 5.20, 5.27, 5.31, 5.34

Problem 5.4:
4. To compute the forces in structures, sometimes we must solve equations (called transcendental equations because they have no analytical solution) similar to the following. Plot the function between $0 \leq x \leq 5$ to roughly locate the zeros of this equation:

$$
x \tan x=9
$$

Then use the fzero function to accurately find the first three roots. Finally, use the fplot function to plot the function in the vicinity of each zero.

Find the first three zeros by plotting the function.

Editor - C:\Laptop Backup\matlab\Homework Solutions\Cha|

```
problem5_4.m x funprob5_4.m x
1 % Problem 5.4: Scott Thomas
2 - clear
3- clc
4- disp('Problem 5.4: Scott Thomas')
5
6 - N = 10000;
7- x = linspace (0,5,N);
8 - y = funprob5_4(x);
9- plot(x,y),xlabel('x'),ylabel('y')
10 - title('Problem 5.4: Scott Thomas')
```


Locate the zeros by changing the limits on the y axis.
Editor - C:\Laptop Backup\matlab\Homework Solutions\Chap
\therefore problem5_4.m \times funprob5_4.m \times

```
1 % Problem 5.4: Scott Thomas
2 - clear
3- clc
4- disp('Problem 5.4: Scott Thomas')
5
6-N = 10000;
7- x = linspace (0,5,N);
8- Y = funprob5_4(x);
9- plot(x,y),xlabel('x'),ylabel('y')
10- axis([0 5 -10 10]), grid on
11 - title('Problem 5.4: Scott Thomas')
```


The first three zeros are at $x_{1}=1.4, x_{2}=1.55, x_{3}=4.3$.

Editor - C: \backslash Laptop Backup\matlab\Homework Solutions\Chapter 05 Homew

problem5_4.m ${ }^{*}$ x funprob5_4.m x
2 - clear
3- clc
5
6- N = 10000;
7- x = linspace (0,5,N);
8 - y = funprob5_4(x);
18 -

```
```

```
1 % Problem 5.4: Scott Thomas
```

```
1 % Problem 5.4: Scott Thomas
    4- disp('Problem 5.4: Scott Thomas')
    4- disp('Problem 5.4: Scott Thomas')
    9 - plot(x,y),xlabel('x'),ylabel('y')
    9 - plot(x,y),xlabel('x'),ylabel('y')
10- title('Problem 5.4: Scott Thomas')
10- title('Problem 5.4: Scott Thomas')
11 - axis([0 5 -10 10]), grid on
11 - axis([0 5 -10 10]), grid on
17- fnc = @funprob5_4; %create a function handle
```

17- fnc = @funprob5_4; %create a function handle

```
```

 x1 = fzero(@funprob5_4,1.4)
    ```
    x1 = fzero(@funprob5_4,1.4)
    x2 = fzero(@funprob5_4,1.55)
    x2 = fzero(@funprob5_4,1.55)
    x3 = fzero(@funprob5_4,4.3)
    x3 = fzero(@funprob5_4,4.3)
    figure
    figure
    fplot(fnc,[1 1.45 -10 10]); grid on
    fplot(fnc,[1 1.45 -10 10]); grid on
    figure
    figure
    fplot(fnc,[4 5 -10 10]);grid on
```

 fplot(fnc,[4 5 -10 10]);grid on
    ```

\title{
Command Window
}

Problem 5.4: Scott Thomas
\(\mathrm{x} 1=\)
1.4149
\(\mathrm{x} 2=\)
1.5708
\(\mathrm{x} 3=\)
4.2694

First zero:


\section*{Second zero:}


Third zero:

7. It is known that the following Leibniz series converges to the value \(\pi / 4\) as \(n \rightarrow \infty\).
\[
S(n)=\sum_{k=0}^{n}(-1)^{k} \frac{1}{2 k+1}
\]

Plot the difference between \(\pi / 4\) and the sum \(S(n)\) versus \(n\) for \(0 \leq\) \(n \leq 200\).

Problem setup: Work the summation out by hand.
\[
\begin{gathered}
S(0)=(-1)^{0}\left(\frac{1}{2 \times 0+1}\right)=1 \\
S(1)=S(0)+(-1)^{1}\left(\frac{1}{2 \times 1+1}\right)=1-\frac{1}{3}=\frac{2}{3} \\
S(2)=S(1)+(-1)^{2}\left(\frac{1}{2 \times 2+1}\right)=1-\frac{1}{3}+\frac{1}{5}=0.8 \overline{6} \\
S(3)=S(2)+(-1)^{3}\left(\frac{1}{2 \times 3+1}\right)=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}=0.7238 \\
S(4)=S(3)+(-1)^{4}\left(\frac{1}{2 \times 4+1}\right)=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}=0.8349
\end{gathered}
\]

Check the program for the first five calculations:

\section*{Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 05 Hor}
problem5_7.m \(\times\)
1 \% Problem 5.7
2 - clear
\(3-\quad\) clc
4 - disp('Problem 5.7: Scott Thomas')
5
\(6-\quad\) sum \(=0\);
\(7-\square\) for \(k=1: 5\)
\(\left.8-\quad \begin{array}{l}\operatorname{sum}=\operatorname{sum}+(-1)^{\wedge}(k-1)^{*}(1 /(2 *(k-1)+1)) \\ \text { end }\end{array}\right)\).

Command Window
Problem 5.7: Scott Thomas
sum \(=\)

1
sum \(=\)
0.6667
sum \(=\)
0.8667
sum \(=\)
0.7238
sum \(=\)
0.8349

Create vectors for plotting the function. Load the vectors inside the for loop. Use the Debugging Tool to check the logic flow.

Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 05 Homework\problem5_7.n
: problem5_7.m* \({ }^{\text {* }}\)
1 \% Problem 5.7
2 - clear
3 - clc
4- disp('Problem 5.7: Scott Thomas')
5
sum \(=0\); ofitialize the sum variable to zero
for \(k=1: 5\)
sum \(=\) sum \(+(-1)^{\wedge}(k-1)^{*}\left(1 /\left(2^{*}(k-1)+1\right)\right)\);
\(\mathrm{x}(\mathrm{k})=\mathrm{k}-1\);
\(\mathrm{y}(\mathrm{k})=\) sum;
end
x
y
diff = pi/4 - y
plot(x,diff), xlabel('n'), ylabel('Difference'), grid on

Command Window
Problem 5.7: Scott Thomas
\(\mathrm{x}=\)
\begin{tabular}{llllll}
0 & 1 & 2 & 3 & 4
\end{tabular}
\(\mathrm{y}=\)
1.0000
0.6667
0.8667
0.7238
0.8349
diff \(=\)
\begin{tabular}{lllll}
-0.2146 & 0.1187 & -0.0813 & 0.0616 & -0.0495
\end{tabular}


Now that the program has been checked for a small number of calculations, suppress output from all of the vectors and change the number of elements to 200.


10. Many applications use the following "small angle" approximation for the sine to obtain a simpler model that is easy to understand and analyze. This approximate states that \(\sin x \approx x\), where \(x\) must be in radians. Investigate the accuracy of this approximation by creating three plots. For the first, plot \(\sin x\) versus \(x\) for \(0 \leq x \leq 1\). For the second plot the approximation error \(\sin x-x\) versus \(x\) for \(0 \leq x \leq 1\). For the third plot the relative error \([\sin (x)-x] / \sin (x)\) versus \(x\) for \(0 \leq x \leq 1\). How small must \(x\) be for the approximation to be accurate within 5 percent? Use the relative error for this calculation.

```

Command Window
Problem 5.10: Scott Thomas
x1 =
0.5385
y4 =
0.0500

```

Problem 5.10: Scott Thomas



14.The function \(y(t)=1-e^{-b t}\), where \(t\) is time and \(b>0\), describes many processes, such as the height of liquid in a tank as it is being filled and the temperature of an object being heated. Investigate the effect of the parameter \(b\) on \(y(t)\). To do this, plot \(y\) versus \(t\) for \(0 \leq t \leq 10\) seconds and \(b=0.01,0.05,0.1,0.5,1.0,5.0\) and 10.0 on the same plot. How long will it take for \(y(t)\) to reach 98 percent of its steady-state value when \(b=0.5\) ?


\section*{Command Window}

Problem 5.14: Scott Thomas
t98 =
7.8240

17.* The height \(h(t)\) and horizontal distance \(x(t)\) traveled by a ball thrown at an angle \(A\) with a speed \(v\) are given by
\[
\begin{gathered}
h(t)=v t \sin A-\frac{1}{2} g t^{2} \\
x(t)=v t \cos A
\end{gathered}
\]

At Earth's surface the acceleration due to gravity is \(g=9.81 \mathrm{~m} / \mathrm{s}^{2}\).
a. Suppose the ball is thrown with a velocity \(v=10 \mathrm{~m} / \mathrm{s}\) at an angle of \(35^{\circ}\). Use MATLAB to compute how high the ball will go, how far it will go, and how long it will take to hit the ground.
\(b\) : Use the values of \(v\) and \(A\) given in part \(a\) to plot the ball's trajectory; that is, plot \(h\) versus \(x\) for positive values of \(h\).
c. Plot the trajectories for \(v=10 \mathrm{~m} / \mathrm{s}\) corresponding to five values of the angle \(A\) : \(20^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}\), and \(70^{\circ}\).
d. Plot the trajectories for \(A=45^{\circ}\) corresponding to five values of the initial velocity \(v: 10,12,14,16\), and \(18 \mathrm{~m} / \mathrm{s}\).

\section*{Parts a and b:}

Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 05 Homework\problem5
```

:problem5_17ab.m x problem5_17a.m x
1 % Problem 5.17
2 - clear
3- clc
4- disp('Problem 5.17: Scott Thomas')
5 - disp('Parts a and b: ')
6 - g = 9.81;% m/s
7- v = 10;% m/s
8- ADeg = 35;% degrees
9- ARad = ADeg*pi/180;% radians
1 0
11 - dt = 0.001;% seconds
12 - t = 0;
13- h = 0;
k = 1;
\squarehile h >= 0
t = t + dt;
h = v*t*sin(ARad) - 0.5*g*t.^2;% m
x = v*t* cos (ARad);% m
tplot(k) = t;
hplot(k) = h;
xplot(k) = x;
k = k + 1;
end
maximum_height = max (hplot)
maximum_distance = max (xplot)
maximum_time = max(tplot)
figure
plot(xplot, hplot), xlabel('Horizontal Distance (m)')
grid on, ylabel('Height (m)')
title('Problem 5.17a and b: Scott Thomas')

```
Command Window
    Problem 5.17: Scott Thomas
    Parts \(a\) and \(b:\)
    maximum_height \(=\)
        1.6768
    maximum_distance \(=\)
        9.5841
    maximum_time \(=\)
        1.1700


\section*{Part c:}

\section*{Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 05 Homework\problem5_17c.m*}
```

 problem5_17c.m* x
 1 % Problem 5.17c
2 - clear,clc
3- disp('Problem 5.17c: Scott Thomas')
4-g g= 9.81;% m/s
5- v = 10;% m/s
6 - ADeg = [20, 30, 45, 60, 70];% degrees
7- ARad = ADeg*pi/180;% radians
8- dt = 0.001;% seconds
9-
t = 0;
h = 0;
k = 1;
while h >= 0
h = v*t*sin (ARad (m)) - 0.5*g*t.^2 ; % m
x = v*t* cos(ARad (m)); % m
hplot (m,k) = h;
xplot (m,k) = x;
t = t + dt;
k = k + 1;
end
end
% Find the nonzero values of }\textrm{x}\mathrm{ and }\textrm{h
[~,~,xplot1] = find(xplot(1,:));
[~,~,hplot1] = find(hplot(1,:));
[~,~,xplot2] = find(xplot(2,:));
[~,~,hplot2] = find(hplot(2,:));
[~,~,xplot3] = find(xplot(3,:));
[~,~,hplot3] = find(hplot(3,:));
[~,~,xplot4] = find(xplot(4,:));
[~,~,hplot4] = find(hplot(4,:));
[~,~,xplot5] = find(xplot(5,:));
[~,~,hplot5] = find(hplot(5,:));
plot(xplot1, hplot1, xplot2, hplot2, xplot3, hplot3,...
xplot4, hplot4,xplot5, hplot5)
xlabel('Horizontal Distance (m)')
grid on, ylabel('Height (m)')
title('Problem 5.17c: Scott Thomas')
legend('A = 20', 'A = 30', 'A = 45', 'A = 60', 'A = 70',···
'Location','Best')

```


\section*{Part d:}

\section*{Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 05 Homework\problem5_17d.m}

\section*{problem5_17d.m \(\times\)}
```

% Problem 5.17d
clear
clc
disp('Problem 5.17d: Scott Thomas')
g = 9.81;% m/s
v = 10:2:18;% m/s
ADeg = 45;% degrees
ARad = ADeg*pi/180;s radians
dt = 0.001;% seconds
for m = 1:5
t = 0;
h = 0;
k = 1;
while h >= 0
h}=\textrm{v}(\textrm{m})*\textrm{t}*\operatorname{sin}(\textrm{ARad})-0.5*g*\textrm{t}.^2 2 ; % m,
x = v (m) *t* cos (ARad); % m
hplot (m,k) = h;
xplot (m,k) = x;
t = t + dt;
k = k + 1;
end
end
% Find the nonzero values of x and h
[~,~,xplot1] = find(xplot(1,:));
[~,~,hplot1] = find(hplot(1,:));
[~,~,xplot2] = find(xplot(2,:));
[~,~,hplot2] = find(hplot(2,:));
[~,~,xplot3] = find(xplot(3,:));
[~,~,hplot3] = find(hplot(3,:));
[~,~,xplot4] = find(xplot(4,:));
[~,~,hplot4] = find(hplot(4,:));
[~,~,xplot5] = find(xplot(5,:));
[~,~,hplot5] = find(hplot(5,:));
plot(xplot1, hplot1, xplot2, hplot2, xplot3, hplot3,...
xplot4, hplot4,xplot5, hplot5)
xlabel('Horizontal Distance (m)')
grid on, ylabel('Height (m)')
title('Problem 5.17d: Scott Thomas')
legend('v = 10', 'v = 12', 'v = 14', 'v = 16', 'v = 18',···
'Location','Best')

```


Problem 5.20:
When a constant voltage was applied to a certain motor initially at rest, its rotational speed \(s(t)\) versus time was measured. The data appear in the following table:
\begin{tabular}{l|ccccccccc}
\hline Time (sec) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 10 \\
\hline Speed (rpm) & 1210 & 1866 & 2301 & 2564 & 2724 & 2881 & 2879 & 2915 & 3010 \\
\hline
\end{tabular}

Plot the rotational speed versus time using open red circles. Then plot the following function on the same graph:
\[
s(t)=b\left(1-e^{-c t}\right) ; \quad b=3010, \quad c=0.1: 0.1: 0.6
\]

What value of \(c\) provides the best fit to the data?

\section*{Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 05 Homework\problem5_20.m}
```

problem5_20.m x

* Problem 5.20
clear
clc
disp('Problem 5.20: Scott Thomas')
t = [lllllllllll
s = [1210 1866 2301 2564 2724 2881 2879 2915 3010];
N = 1000;
tt = linspace (1, 10,N);
b = 3010;
c = 0.1:0.1:0.6;
for k = 1:length(c)
for m = 1:N
ss(k,m) = b*(1 - exp(-c(k).*tt (m)));
end
end
plot(t, s, 'ro', tt,ss(1,:), tt,ss(2,:), tt,ss(3,:), tt,ss(4,:),···
tt,ss(5,:), tt,ss(6,:))
xlabel('Time (seconds)'), xlabel('Time (seconds)'), ylabel('Speed (RPM)')
legend('Original Data','c = -0.1','c = -0.2','c = -0.3','c = -0.4', ...
'c = -0.5','c = -0.6','Location','SouthEast')
title('Problem 5.20: Scott Thomas')
text(2, 3250,'Best Fit: c = -0.5')

```


\section*{Problem 5.27:}
27. An approximation to the function \(\sin x\) is \(\sin x \approx x-x^{3} / 6\). Plot the \(\sin x\) function and 20 evenly spaced error bars representing the error in the approximation.
```

% Problem 5.27
clear
clc
disp('Problem 5.27: Scott Thomas')
N = 20;
x = linspace(0,2* pi,N);
y1 = sin(x);
y2 = x - x.^3/6;
error = abs(y1 - y2);% Relative Error
errorbar(x,y1, error)
ylabel('sin(x) and Function Error'), xlabel('x (Radians)')
title('Problem 5.27: Scott Thomas')
set(gca,'XTick',0:pi/2:2*pi)
set(gca,'XTickLabel',{'0','pi/2','pi','3pi/2','2pi'})
grid on
axis([0 2*pi -40 40])

```

Problem 5.27: Scott Thomas

Problem 5.27: Scott Thomas


\section*{Problem 5.31:}
31. Obtain the surface and contour plots for the function \(z=-x^{2}+2 x y+\) \(3 y^{2}\). This surface has the shape of a saddle. At its saddlepoint at \(x=y=0\), the surface has zero slope, but this point does not correspond to either a minimum or a maximum. What type of contour lines corresponds to a saddlepoint?
```

% Problem 5.31
clear
clc
disp('Problem 5.31: Scott Thomas')
N = 40;
x = linspace (-10,10,N);
y = linspace (-10,10,N);
[X,Y] = meshgrid(x,y);
Z = -X.^2 + 2* X.* Y + 3*Y.^2;
%mesh(X,Y,Z)
contour (X,Y,Z)
ylabe1('y'), xlabe1('x'), zlabe1('z')
title('Problem 5.31: Scott Thomas')
grid on

```

Problem 5.31: Scott Thomas



\section*{Problem 5.34:}
34. The following function describes oscillations in some mechanical structures and electric circuits.
\[
z(t)=e^{-t / \tau} \sin (\omega t+\phi)
\]

In this function \(t\) is time, and \(\omega\) is the oscillation frequency in radians per unit time. The oscillations have a period of \(2 \pi / \omega\), and their amplitudes decay in time at a rate determined by \(\tau\), which is called the time constant. The smaller \(\tau\) is, the faster the oscillations die out.

Suppose that \(\phi=0, \omega=2\), and \(\tau\) can have values in the range \(0.5 \leq\) \(\tau \leq 10 \mathrm{sec}\). Then the preceding equation becomes
\[
z(t)=e^{-t / \tau} \sin (2 t)
\]

Obtain a surface plot and a contour plot of this function to help visualize the effect of \(\tau\) for \(0 \leq t \leq 15 \mathrm{sec}\). Let the \(x\) variable be time \(t\) and the \(y\) variable be \(\tau\).
```

% Problem 5.34
clear
clc
disp('Problem 5.34: Scott Thomas')
N = 60;
t = linspace (0,15,N);
tau = linspace(0.5,10,N);
[X,Y] = meshgrid(t,tau);
z = exp(-(X./Y)). *}\operatorname{sin}(2*X)
%mesh(X,Y,z)
contour(X,Y,z)
ylabel('\tau (seconds)'), xlabe1('t (seconds)'), zlabel('z')
title('Problem 5.34: Scott Thomas')
grid on

```

Problem 5.34: Scott Thomas


Problem 5.34: Scott Thomas
```

