ME 1020 Engineering Programming with MATLAB

Chapter 6 Homework Solutions: 6.2, 6.7, 6.12, 6.16

Problem 6.2:
2.* In each of the following problems, determine the best function $y(x)$ (linear, exponential, or power function) to describe the data. Plot the function on the same plot with the data. Label and format the plots appropriately.
a.

x	25	30	35	40	45
y	5	260	480	745	1100

b.

x	2.5	3	3.5	4	4.5	5	5.5	6	7	8	9	10
y	1500	1220	1050	915	810	745	690	620	520	480	410	390

c.

x	550	600	650	700	750
y	41.2	18.62	8.62	3.92	1.86

Part a: First plot the original data on rectilinear scales, $\log -\log$ scales and semi-log y scales.

Editor - C:\Laptop Backup\matlab\Homework Solutions\Cha

1	\% Problem 6.2a
2 -	clear
3 -	clc
4 -	disp('Problem 6.2a: Scott Thomas')
5	
$6-$	$\mathrm{xa}=\left[\begin{array}{llllll}25 & 30 & 35 & 40 & 45\end{array}\right] ;$
7 -	$\mathrm{ya}=\left[\begin{array}{llllll}5 & 260 & 480 & 745 & 1100\end{array}\right] ;$
8	
$9-$	figure
$10-$	plot (xa,ya, '-o')
11 -	xlabel('x'), ylabel('y')
12 -	title('Rectilinear Plot')
13 -	figure
14 -	$\operatorname{loglog}\left(x a, y a, '-'^{\prime}\right)$
15 -	xlabel('x'), ylabel('y')
16 -	title('Log-Log Plot')
17 -	figure
18 -	semilogy (xa, ya, '-o')
19 -	xlabel('x'), ylabel('y')
20 -	title('Semi-Log y Plot')
21	

Rectilinear Plot

The plot is most linear on rectilinear scales. Use the polyfit command to calculate the Linear curve fit. Plot the original data and the curve fit onto rectilinear scales.

Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 06 Homework\problem6_2a.m

35
Command Window
Problem 6.2a: Scott Thomas
$\mathrm{p}=$
$5.3500 \mathrm{e}+01-1.3545 \mathrm{e}+03$
$\operatorname{ma}=$
$5.3500 \mathrm{e}+01$
$\mathrm{ba}=$
$-1.3545 e+03$

Part b:
3 Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 06 Homework\problem6_2b.m

The plot is most linear on log-log scales. Use the polyfit command to calculate the Power-Law curve fit. Plot the original data and the curve fit onto rectilinear scales.

Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 06 Homework\problem6_2b.m*

problem6_2b.m* ${ }^{*}$

```
19 % xlabel('x'), ylabel('y')
20 % title('Semi-Log y Plot')
21
22 - format short e
23- p = polyfit(log10(xb), log10(yb),1)
24- mb = p(1)
25- bb = 10^(p(2))
26 - N = 100;
27 - xplot = linspace(2.5,10,N);
28 - yplot = bb*xplot. ^mb;
29
30
31 - figure
32 - plot(xb,yb,'-o',xplot,yplot)
33 - xlabel('x'), ylabel('y')
34 - title('Problem 6.2b: Scott Thomas')
35 - legend('Original Data','y = 3.5821e+03*x^{-9.7642e-01}','Location','Best')
```


Command Window

Problem 6.2b: Scott Thomas
$\mathrm{p}=$
$-9.7642 e-01$
$3.5541 \mathrm{e}+00$
$\mathrm{mb}=$
$-9.7642 \mathrm{e}-01$
$\mathrm{bb}=$
$3.5821 e+03$

Part c:
Editor - C:\Laptop Backup\matlab\Homework Solutions\Chap
problem6_2c.m x

1	\% Problem 6.2c
2 -	clear
$3-$	clc
4 -	disp('Problem 6.2c: Scott Thomas')
5	
6 -	$\mathrm{xc}=\left[\begin{array}{lllll}550 & 600 & 650 & 700 & 750\end{array}\right] ;$
7 -	$\mathrm{yc}=\left[\begin{array}{llllll}41.2 & 18.62 & 8.62 & 3.92 & 1.86\end{array}\right] ;$
8	
9 -	figure
$10-$	plot (xc, yc, '-o')
11 -	xlabel('x'), ylabel('Y')
12 -	title('Rectilinear Plot')
13 -	figure
14 -	$\operatorname{loglog}\left(\mathrm{xc}, \mathrm{yc},{ }^{\prime}-\mathrm{O}^{\prime}\right)$
15 -	xlabel('x'), ylabel('y')
16 -	title('Log-Log Plot')
17 -	figure
18 -	semilogy ($\mathrm{xc}, \mathrm{yc},{ }^{\prime}-\mathrm{o}^{\prime}$)
19 -	xlabel('x'), ylabel('y')
$20-$	title('Semi-Log y Plot')
21	

The plot is most linear on semi-log y scales. Use the polyfit command to calculate the Exponential curve fit. Plot the original data and the curve fit onto rectilinear scales.

Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 06 Homework\problem6_2c.m
problem6_2c.m \times

```
19 % xlabel('x'), ylabel('y')
20 % title('Semi-Log y Plot')
21
22 - format short e
23- p = polyfit(xc,log10(yc),1)
24- mc = p(1)
25-bc=10^(p(2))
26-N = 100;
27- xplot = linspace(550,750,N);
28- yplot = bc*10.^(mc.*xplot);
29
30- figure
31 - plot(xc,yc,'-0',xplot,yplot)
32 - xlabel('x'), ylabel('y')
33- title('Problem 6.2c: Scott Thomas')
34 - legend('Original Data','y = 2.0622e+05*10^{(-6.7349e-03*x)}','Location','Best')
```

Command Window
Problem 6.2c: Scott Thomas
$\mathrm{p}=$
$-6.7349 e-03$
$5.3143 e+00$
$\mathrm{mc}=$
$-6.7349 e-03$
$\mathrm{bc}=$
$2.0622 \mathrm{e}+05$

Problem 6.7:

7. A certain electric circuit has a resistor and a capacitor. The capacitor is initially charged to 100 V . When the power supply is detached, the capacitor voltage decays with time, as the following data table shows. Find a functional description of the capacitor voltage v as a function of time t. Plot the function and the data on the same plot.

Time (s)	0	0.5	1	1.5	2	2.5	3	3.5
Voltage (V)	100	62	38	21	13	7	4	2

First plot the original data on rectilinear scales, log-log scales and semi-log y scales.

Editor - C:\Laptop Backup\matlab\Homework Solutions\Cha

```
problem6_7.m x
    % Problem 6.7
    clear
    clc
    disp('Problem 6.7: Scott Thomas')
    format shortEng
    x = 0:0.5:3.5;
    y = [100 62 38 21 13 7 4 2];
    figure
    plot(x,y,'-0')
    xlabel('x'), ylabel('y')
    title('Rectilinear Plot')
    figure
    loglog(x,y,'-0')
    xlabel('x'), ylabel('y')
    title('Log-Log Plot')
    figure
    semilogy(x,y,'-0')
    xlabel('x'), ylabel('y')
    title('Semi-Log y Plot')
```


The plot is most linear on semi-log y scales. Use the polyfit command to calculate the Exponential curve fit. Plot the original data and the curve fit onto rectilinear scales.

Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 06 Homework\problem6_7.m*

```
problem6_7.m* x
21
8 xlabel('x'), ylabel('y')
    % title('Semi-Log y Plot')
    format short e
    p = polyfit(x,log10(y),1)
    m = p(1)
    b}=1\mp@subsup{0}{}{\wedge}(p(2)
    N = 100;
    xplot = linspace (0,3.5,N);
    yplot = b*10.^(m.*xplot);
    figure
    plot(x,y,'-0',xplot,yplot)
    xlabel('x'), ylabel('y')
    title('Problem 6.7: Scott Thomas')
    legend('Original Data','y = 1.0929e+02*10^{(-4.8230e-01*x)}','Location','Best')
```

Problem 6.7: Scott Thomas
$p=$
$-4.8230 \mathrm{e}-01 \quad 2.0386 \mathrm{e}+00$
m =
$-4.8230 \mathrm{e}-01$
$\mathrm{b}=$
$1.0929 \mathrm{e}+02$

12. The following represents pressure samples, in pounds per square inch (psi), taken in a fuel line once every second for 10 seconds. Fit a first-degree polynomial, a seconddegree polynomial, and a third-degree polynomial to these data using the polyfit command. Plot the curve fits along with the original data. Use the third-degree polynomial curve fit to provide an estimate of the pressure at $t=11$ seconds.

Time (sec)	Pressure (psi)	Time (sec)	Pressure (psi)
1	26.1	6	30.6
2	27.0	7	31.1
3	28.2	8	31.3
4	29.0	9	31.0
5	29.8	10	30.5

\% problem6_12_3.m* ${ }^{\text { }}$)		
1	\% Problem 6.12	
2 -	clear	
$3-$	clc	
4 -	disp('Problem 6.12: Scott Thomas')	
$5-$	format shortEng	
6 -	time = 1:10;	
7 -	timeplot $=1: 0.01: 12$;	
$8-$	pressure $=\left[\begin{array}{lllllllllllll}26.1 & 27 & 28.2 & 29 & 29.8 & 30.6 & 31.1 & 31.3 & 31 & 30.5\end{array}\right] ;$	
9	sfirst-order equation:	
$10-$	coeffi = polyfit(time,pressure, 1)	
11 -	pfitl $=$ coeffi (1)*time + coeffi (2);	
12 -	pplot1 $=$ coeff1 (1)*timeplot + coeffi (2) ;	
13	\%second-order equation:	
14 -	coeff2 = polyfit(time,pressure, 2)	
15 -	pfit2 $=$ coeff2 $(1) *$ time.^2 $+\operatorname{coeff2}(2) *$ time $+\operatorname{coeff2}(3)$;	
16 -	pplot2 $=$ coeff2 $(1) *$ timeplot.^2 $+\operatorname{coeff2}(2) *$ timeplot $+\operatorname{coeff2}(3)$;	
17	sthird-order equation:	
18 -	coeff3 = polyfit(time,pressure, 3)	
19 -	pfit3 $=$ coeff3 (1)*time.^3 $+\operatorname{coeff3}(2) *$ time.^2 ${ }^{\wedge}+\operatorname{coeff3}(3) *$ time $+\operatorname{coeff3}(4) ;$	
$20-$	pplot3 $=$ coeff3 (1)*timeplot.^3 + coeff3 (2)*timeplot.^2 + coeff3 (3)*timeplot	+ coeff3 (4) ;
21	\%Calculate the pressure at 11 seconds: Use the third-order equation.	
22 -	time11 = 11;	
23 -	p_11 $=\operatorname{coeff3}(1) *$ time11.^3 $+\operatorname{coeff3}(2) *$ time11.^2 $+\operatorname{coeff3}(3) *$ timel1 + coeff3	3 (4)
24 -	figure	
25 -	plot(time,pressure, 'o', timeplot, pplot1, timeplot, pplot2, timeplot, pplot	t3,time11,p_11,'r*')
26 -	xlabel('Time t (sec)'),	
27 -	ylabel('Pressure P (psi)'),	
28 -	title('Problem 6.12: Scott Thomas')	
29 -	text (2, 26.5, 'P $=0.54667 * t+0.35333^{\prime}$)	
$30-$	text (2, 26., ${ }^{\prime} \mathrm{P}=-0.09773 * \mathrm{t}^{\wedge} 2+1.6217 * t-1.7967{ }^{\prime}$)	
31 -	text (2, 25.5, ${ }^{\prime} \mathrm{P}=-0.0105672 \mathrm{t}^{\text {^ }} 3+0.0766317 * \mathrm{t}^{\wedge} 2+0.8175019 * \mathrm{t}-0.890{ }^{\prime}$)	
$32-$	legend('Original Data','First-Order','Second-Order','Third-Order', P (t = 11	sec) ', 'Location', 'NorthWest')

Command Window

Problem 6.12: Scott Thomas
coeff1 $=$
$546.6667 e-003 \quad 26.4533 e+000$
coeff2 $=$
$-97.7273 e-003$
$1.6217 e+000$
$24.3033 e+000$
coeff3 $=$
$-10.5672 e-003$
$76.6317 e-003$
$817.5019 \mathrm{e}-003$
$25.2100 \mathrm{e}+000$
p_11 =
$29.4100 \mathrm{e}+000$

Problem 6.12: Scott Thomas

Problem 6.16:
16. The following function is linear in the parameters a_{1} and a_{2} :

$$
y(x)=a_{1}+a_{2} \ln x
$$

Use the polyfit command with the following data to obtain values for a_{1} and a_{2}. Plot the curve fit on a figure with rectangular scales along with the original data below. Use the curve fit to estimate y at $x=2.5$ and at $x=11$.

Use the Basic Fitting Interface to determine a fourth-order polynomial fit to the original data and estimate y at $x=2.5$. Plot the estimate of y at $x=2.5$ on the figure. Show the equation of the curve fit on the figure using five significant digits. Plot the residuals as a bar plot on a separate figure. Show the norm of the residuals on the figure.

x	1	2	3	4	5	6	7	8	9	10
y	10	14	16	18	19	20	21	22	23	23

Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 06 Homework\problem6_16.m*

problem6_16.m* ${ }^{*}$
1 \% Problem 6.16
2 - clear
3- clc
4 - disp('Problem 6.16: Scott Thomas')
$5 \quad$ \% $y=a _1+a_{-} 2 * \ln (x)$
6 - format shortEng
$7-\quad x=1: 10$;
$8-\quad y=\left[\begin{array}{llllllllll}10 & 14 & 16 & 18 & 19 & 20 & 21 & 22 & 23 & 23\end{array}\right] ;$ s torr
$9-\quad \ln \mathrm{x}=\log (\mathrm{x})$;
$10-\quad$ coeff $=$ polyfit $(\ln x, y, 1)$
1 - yat2_5 $=\operatorname{coeff(1)*\operatorname {log}(2.5)}+\operatorname{coeff(2)}$
12 - yat11 $=$ coeff(1)*log(11) $+\operatorname{coeff(2)}$
$13-\quad \mathrm{N}=100$;
4 - \quad xplot $=$ linspace $(1,12, N)$;
yplot $=\operatorname{coeff}(1) * \log (x p l o t)+\operatorname{coeff}(2) ;$
figure
plot (x,y, 'o', xplot,yplot, 'k', 2.5, yat2_5, 'r*', 11, yat11, 'm*')
xlabel('x'), ylabel('y'),
title('Problem 6.16: Scott Thomas')
legend('Original Data','y $=9.9123+5.7518 * \ln (x)$ ',.
'y $(\mathrm{x}=2.5)=15.1826^{\prime}, \mathrm{y}(\mathrm{x}=11)=23.7044$ ', 'Location','Best')
figure
plot(x,y, 'o')
xlabel('x'), ylabel('y'),
title('Problem 6.16: Scott Thomas')

Command Window

Problem 6.16: Scott Thomas
coeff $=$
$5.7518 \mathrm{e}+000$
$9.9123 \mathrm{e}+000$
yat2_5 =
$15.1826 \mathrm{e}+000$
yat11 =

Basic Fitting - 2

Select data: data 1
\square Center and scale x data

Plot fits

Check to display fits on figure

\square spline interpolant	A
\square shape-preserving interpolant	
\square linear	
\square quadratic	
\square cubic	三
\checkmark 4th degree polynomial	
\square 5th degree polynomial	
\square 6th degree polynomial	
\square 7th degree polynomial	
\square 8th degree polynomial	
- 9th dearee nolvnomial	

Significant digits: \qquad
(Plot residuals

Save to workspace...
Numerical results

Find $y=f(x)$
Enter value(s) or a valid MATLAB expression such as $x, 1: 2: 10$ or [10,15]

Save to workspace...

- Plot evaluated results

