ME 1020 Engineering Programming with MATLAB

Chapter 9a Homework Solutions: 9.2, 9.4, 9.6, 9.7, 9.9, 9.18

Problem 9.2: The total distance traveled by an object moving at velocity $v(t)$ from the time $t=a$ to the time $t=b$ is

$$
x(b)=\int_{a}^{b} v(t) d t+x(a)
$$

Suppose an object starts at time $t=0$ and moves with a velocity of $v(t)=\cos (\pi t) \mathrm{m}$. Find the object's location at $t=1$ second if $x(0)=2 \mathrm{~m}$.

The total distance traveled by an object moving at velocity $v(t)$ from time $t=a$ to $t=$ b is:

$$
x(b)=\int_{a}^{b} v(t) d t+x(a)
$$

For this problem, $a=0, b=1$ second. The position at $a=0$ seconds is $x(t=0)=2.0$ meters:

$$
\begin{aligned}
& x(1)=\int_{0}^{1} v(t) d t+x(0) \\
& x(1)=\int_{0}^{1} \cos (\pi t) d t+2
\end{aligned}
$$

This function can be integrated directly:

$$
\begin{gathered}
\int \cos (a x) d x=\frac{1}{a} \sin (a x)+C \\
x(1)=\left[\left(\frac{1}{\pi}\right) \sin (\pi t)\right]_{0}^{1}+2 \\
x(1)=\left(\frac{1}{\pi}\right)\{\sin (\pi \cdot 1)-\sin (\pi \cdot 0)\}+2 \\
x(1)=\left(\frac{1}{\pi}\right)(0-0)+2=2.0
\end{gathered}
$$

The distance traveled in the positive x direction is cancelled by the distance traveled in the negative x direction, so the object ends up where it started from.

```
    Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 09 Homework\problemg
    problem9_2.m* \(\times\)
    1 \% Problem 9.2
    clear
    clc
    disp('Problem 9.2: Scott Thomas')
    \(\mathrm{N}=100\)
    \(\mathrm{t}=\) linspace \((0,1.0, \mathrm{~N})\);
    \(\mathrm{v}=\cos (\mathrm{pi} * \mathrm{t})\);
    plot(t,v), xlabel('t (sec)'), ylabel('v (m/s)')
    title('Problem 9.2: Scott Thomas')
    sum \(=2.0\);
    for \(k=1: N-1\)
    sum \(=s u m+1 / 2^{*}(t(k+1)-t(k))^{*}(v(k+1)+v(k)) ;\)
    end
    format long
    sum
```

Command Window
Problem 9.2: Scott Thomas
$\mathrm{N}=$

100
sum $=$
1.999999999999999

4. The equation for the voltage $v(t)$ across a capacitor as a function of time is

$$
v(t)=\frac{1}{C} \int_{0}^{t} i(t) d t+Q_{0}
$$

where $i(t)$ is the applied current and Q_{0} is the initial charge. A certain capacitor has a capacitance of $C=10^{-2} \mathrm{~F}$. If a current of $i(t)=$ $0.2[1+\sin (200 t)]$ A is applied to the capacitor, compute and plot the current and the voltage as functions of time over the period $0 \leq t \leq$ $3 \pi / 400$ seconds if the initial charge on the capacitor is zero $\left(Q_{0}=0\right)$. Also, determine the voltage at $t=3 \pi / 400$ seconds.

Problem setup:
From Wikipedia,

$$
\begin{gathered}
\int \sin a x \mathrm{~d} x=-\frac{1}{a} \cos a x+C \\
v(t)=\frac{1}{C} \int_{0}^{t} i(t) d t+Q_{0}=\frac{1}{0.01} \int_{0}^{t} 0.2[1+\sin (200 t)] d t+0 \\
v(t)=20\left[t-\frac{1}{200} \cos (200 t)\right]_{0}^{t} \\
v(t)=20\left\{\left[t-\frac{1}{200} \cos (200 t)\right]-\left[(0)-\frac{1}{200} \cos (200 \cdot 0)\right]\right\} \\
v(t)=20\left\{t-\frac{1}{200} \cos (200 t)+\frac{1}{200}\right\} \\
v(t)=20\left\{t+\frac{1}{200}[1-\cos (200 t)]\right\} \\
v\left(t=\frac{3 \pi}{400}\right)=20\left\{\left(\frac{3 \pi}{400}\right)+\frac{1}{200}\left[1-\cos \left(200 \cdot \frac{3 \pi}{400}\right)\right]\right\}=0.571239
\end{gathered}
$$

E Editor - Ci\Laptop Backup\matlab\Homework Solutions\Chapter 09 Homework\problem

problem9_4.m x	
1	\% Problem 9.4
2 -	clear
3 -	clc
4 -	disp('Problem 9.4: Scott Thomas')
5	
6 -	$C=1 \mathrm{e}-2 ;$
7 -	$\mathrm{N}=1001$;
8 -	$\mathrm{t}=$ linspace (0, $3 * \mathrm{pi} / 400, \mathrm{~N}$) ;
$9-$	$\mathrm{i}=0.2 *(1+\sin (200 *$ t) $)$;
10	
11 -	$\mathrm{v}(1)=0.0$;
12 -	\square for $\mathrm{k}=1: \mathrm{N}-1$
13 -	$\mathrm{v}(\mathrm{k}+1)=\mathrm{v}(\mathrm{k})+0.5 *(\mathrm{t}(\mathrm{k}+1)-\mathrm{t}(\mathrm{k}))^{*}(\mathrm{i}(\mathrm{k})+\mathrm{i}(\mathrm{k}+1)) ;$
14 -	¢ end
15 -	$\mathrm{v}=\mathrm{v} / \mathrm{C}$;
16 -	$\mathrm{v}(\mathrm{N})$
17	
18 -	plot(t,i, $\mathrm{t}, \mathrm{v})$, xlabel('t (sec) ')
19 -	ylabel ('Amperage and Voltage')
$20-$	title('Problem 9.4: Scott Thomas')
21 -	legend('i (A)', 'v (V)', 'Location', 'NorthWest')

Command Window

Problem 9.4: Scott Thomas
ans $=$
0.571238712983318

Problem 9.4: Scott Thomas

A certain object moves with the velocity $v(t)$ given in the table below. Calculate the object's position $x(t)$ using numerical integration. The position of the object at the initial time is $x(t=0)=3.0$. Plot the object's velocity and position versus time t.

Time (s)	0	1	2	3	4	5	6	7	8	9	10
Velocity $(\mathrm{m} / \mathrm{s})$	0	2	5	7	9	12	15	18	22	20	17

Problem setup:
The total distance traveled by an object moving at velocity $v(t)$ from the time $t=a$ to the time $t=b$ is

$$
x(b)=\int_{a}^{b} v(t) d t+x(a)
$$

```
E Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 09 Homework\problem
#problem9_6_2.m x 
1 % Problem 9.6
2 - clear
3- clc
4- disp('Problem 9.6: Scott Thomas')
5- v = [lllllllllllllll}
6- t = linspace (0,10,11);
7- x(1) = 3.0;
8-\square for k=1:10
9- x(k+1)=x(k) + 0.5*(t(k+1) - t(k))*(v(k) + v(k+1));
10 - end
11 - plot(t,v, t,x), xlabel('t (sec)')
12 - ylabel('Velocity and Distance Traveled')
13- title('Problem 9.6: Scott Thomas')
14 - legend('v (m/s)', 'x (m)','Location', 'Best')
```


Problem 9.7:

A tank having vertical sides and a bottom area of $100 \mathrm{ft}^{2}$ is used to store water. The tank is initially empty. To fill the tank, water is pumped into the top at the rate given in the following table. Calculate the water height $h(t)$ by numerical integration. Plot the volumetric flow rate and water height versus time.

Time (min)	0	1	2	3	4	5	6	7	8	9	10
Flow Rate $\left(\mathrm{ft}^{3} / \mathrm{min}\right)$	0	80	130	150	150	160	165	170	160	140	120

Problem setup:
Volume within the tank at any time is

$$
V(t)=\int_{0}^{t} \dot{V} d t+V(0)
$$

where \dot{V} is the volumetric flow rate of water going into the tank, and $V(0)$ is the initial volume of water within the tank. The height of water is related to the volume by the area of the base of the tank.

$$
\begin{gathered}
V=h A \\
h=\frac{V}{A}
\end{gathered}
$$

```
% Problem 9.7
    clear
    clc
    disp('Problem 9.7: Scott Thomas')
    A = 100; %ft^2
    Vdot = [l0}800130 150 150 160 165 170 160 140 120];
    t = linspace (0,10,11);
    V(1) = 0.0;
    for k = 1:10
    V(k+1)=V(k)+0.5*(t(k+1)-t(k))*(Vdot (k) + Vdot (k+1));
    end
    h=V/A;
    figure
    plot(t,Vdot), xlabel('t (sec)')
    ylabel('Volumetric Flow Rate (ft^3/min)')
    title('Problem 9.7: Scott Thomas')
    figure
    plot(t,h), xlabel('t (sec)')
    ylabel('Water Height h (ft)')
    title('Problem 9.7: Scott Thomas')
```


Problem 9.9:

A certain object has a mass of 100 kg and is acted on by a force (in Newtons):

$$
f(t)=500\left(2-5 e^{-t}\right)
$$

The mass is a rest at $t=0$. Calculate the object's velocity using numerical integration and plot the velocity as a function of time.

Problem setup:

$$
\begin{gathered}
F=m a \\
a=\frac{F}{m}=\frac{500\left[2-e^{-t}\right]}{100}=5\left[2-e^{-t}\right]
\end{gathered}
$$

Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 09 Homework\problem

problem9_9.m* \times

```
1 % Problem 9.9
2- clear
3- clc
4- disp('Problem 9.9: Scott Thomas')
5 - N = 1000;
6 - t = linspace (0,5,N);
7- a = 5*(2 - 5*exp(-t));
8-v(1) = 0.0;
9-\square
10- v(k+1)=v(k) + 0.5*(t(k+1) - t(k))*(a(k) +a(k+1));
11 - - end
12 - figure
13- plot(t,a), xlabel('t (sec)')
14 - ylabel('Acceleration a (m/s^2)')
15 - title('Problem 9.9: Scott Thomas')
16 - figure
17 - plot(t,v), xlabel('t (sec)')
18 - ylabel('Velocity v (m/s)')
19 - title('Problem 9.9: Scott Thomas')
```


Problem 9.18:

18. At a relative maximum of a curve $y(x)$, the slope $d y / d x$ is zero. Use the following data to estimate the values of x and y that correspond to a maximum point.

x	0	1	2	3	4	5	6	7	8	9	10
y	0	2	5	7	9	10	8	7	6	8	10

Problem setup: Use the Backward, Forward and Central Differences to detect when $\frac{d y}{d x}=0$. From the plot, $x=5.0$ and $x=7.5$.

Problem 9.18

```
clear
clc
disp('Problem 9.18: Scott Thomas')
N = 11;
k = 1:N;
x = 0:10;
y = [llllllllllll
% Backward difference
dydx_b = zeros(1,N);
for k=2:N
    dydx_b(k) = (y(k) - y(k-1))/(x(k) - x(k-1));
end
%disp('dydx_b');
x(2:N);
dydx_b(2:N);
```

```
% Forward difference
    for k=1:N-1
        dydx_f(k) = (y(k+1) - y(k))/(x(k+1) - x(k));
    end
%disp('dydx_f');
x(1:N-1);
dydx_f(1:N-1);
% Central difference
for k=2:N-1
    dydx_c(k) = (y(k+1) - y(k-1))/(x(k+1) - x(k-1));
end
%disp('dydx_c');
x(2:N-1);
dydx_c(2:N-1);
x2 = [\begin{array}{ll}{0}&{10}\end{array}];
y2 = [00 0}]
subplot(2,1,1)
plot(x,y,'o-'), xlabel('x'), ylabel('y'),title('Problem 9.18: Scott Thomas')
subplot(2,1,2)
plot(x(2:N),dydx_b (2:N), x(1:N-1),dydx_f(1:N-1), x(2:N-1),dydx_c(2:N-1), x2,y2,'m'),
xlabel('x'), ylabel('dy/dx')
legend('Backward','Forward','Central','Location','SouthWest')
```

Problem 9.18: Scott Thomas

