ME 1020 Engineering Programming with MATLAB

Chapter 9b Homework Solutions: 9.22, 9.23, 9.24, 9.25, 9.28
Problem 9.22:
22. Plot the solution of the equation

$$
6 \dot{y}+y=f(t)
$$

if $f(t)=0$ for $t<0$ and $f(t)=15$ for $t \geq 0$. The initial condition is $y(0)=7$.

Use the ode45 Solver for this problem.

$$
\dot{y}=-\frac{y}{6}+\frac{f(t)}{6}=-\frac{y}{6}+\frac{15}{6}
$$

```
function ydot = f922( ~,y )
ydot = -y/6 + 15/6;
end
```

```
% Problem 9.22
    clear
    clc
    disp('Problem 9.22: Scott Thomas')
    [t,y] = ode45(@f922, [0, 50], 7 );
y;
plot(t,y), xlabe1('time (s)')
ylabel('Function y(t)')
title('Problem 9.22: Scott Thomas')
```


23. The equation for the voltage y across the capacitor of an $R C$ circuit is

$$
R C \frac{d y}{d t}+y=v(t)
$$

where $v(t)$ is the applied voltage. Suppose that $R C=0.2 \mathrm{~s}$ and that the capacitor voltage is initially 2 V . Suppose also that the applied voltage goes from 0 to 10 V at $t=0$. Plot the voltage $y(t)$ for $0 \leq t \leq 1 \mathrm{~s}$.

Use Euler's Method to solve this problem.

Problem setup:
Solve the differential equation for \dot{y} :

$$
\dot{y}=\frac{d y}{d t}=\left[-\frac{1}{R C} y+\frac{1}{R C} v(t)\right]=g(t, y)
$$

Approximate the derivative as follows:

$$
\frac{d y}{d t} \approx \frac{(y(t+\Delta t)-y(t))}{\Delta t}=g(t, y)
$$

where Δt is called the time step size. Solve for $y(t+\Delta t)$:

$$
y(t+\Delta t)=y(t)+g(t, y) \Delta t
$$

Put this equation into a form appropriate for computer solution. This is called the Difference Equation:

$$
y\left(t_{k+1}\right)=y\left(t_{k}\right)+g\left[t_{k}, y\left(t_{k}\right)\right] \Delta t ; \text { where } t_{k+1}=t_{k}+\Delta t
$$

The expression for the forcing function is $v(t)=10$. This results in the following expression for g :

$$
g(t, y)=-\frac{1}{R C} y+\frac{1}{R C} v(t)=-\frac{1}{R C} y+\frac{10}{R C}=\frac{1}{R C}(10-y)
$$

Substitute this expression into the difference equation:

$$
y\left(t_{k+1}\right)=y\left(t_{k}\right)+\left[\frac{1}{R C}\left(10-y\left(t_{k}\right)\right)\right] \Delta t
$$

In the problem statement, the initial condition is $y(0)=2$. The resistance-capacitance product is $R C=0.2$. Let $\Delta t=0.01$.

For $k=0$:

$$
y\left(t_{1}\right)=y\left(t_{0}\right)+\left[\frac{1}{R C}\left(10-y\left(t_{0}\right)\right)\right] \Delta t=2.0+\left[\frac{1}{0.2}(10-2.0)\right](0.01)=2.4
$$

For $k=1$:

$$
y\left(t_{2}\right)=y\left(t_{1}\right)+\left[\frac{1}{R C}\left(10-y\left(t_{1}\right)\right)\right] \Delta t=2.4+\left[\frac{1}{0.2}(10-2.4)\right](0.01)=2.78
$$

For $k=2$:

$$
y\left(t_{3}\right)=y\left(t_{2}\right)+\left[\frac{1}{R C}\left(10-y\left(t_{2}\right)\right)\right] \Delta t=2.78+\left[\frac{1}{0.2}(10-2.78)\right](0.01)=3.141
$$

This shows that the code is working correctly. The next process is to do a time-step independence study, where the time step Δt is varied until the solution becomes independent of Δt.

```
    % Problem 9.23
    clear
    clc
    disp('Problem 9.23: Scott Thomas')
    N = 100;
    delta_t = 0.01;
    y = zeros(1,N);
    t = zeros(1,N);
    y(1) = 2.0;
    \square \mp@code { f o r ~ k ~ = ~ 1 : N }
        y(k+1)=y(k) + 1/0.2*(10 - y(k))*delta_t;
        t(k+1) = t(k) + delta_t;
    end
    N2 = 10;
    delta_t2 = 0.1;
    y2 = zeros(1,N2);
    t2 = zeros(1,N2);
    y2(1) = 2.0;
    for k = 1:N2
        y2(k+1) = y2 (k) + 1/0.2*(10 - y2 (k))*delta_t2;
        t2(k+1) = t2(k) + delta_t2;
    end
    N3 = 1000;
    delta_t3 = 0.001;
    y3 = zeros(1,N3);
    t3 = zeros(1,N3);
    y3(1) = 2.0;
    for k = 1:N3
        y3(k+1) = y3(k) + 1/0.2*(10 - y3(k))*delta_t3;
        t3(k+1) = t3 (k) + delta_t3;
    end
    N4 = 10000;
    delta_t4 = 0.0001;
    y4 = zeros(1,N4);
    t4 = zeros(1,N4);
    y4(1) = 2.0;
    for k = 1:N4
        y4(k+1)= y4(k) + 1/0.2*(10 - y4 (k))*delta_t4;
        t4(k+1)=t4(k) + delta_t4;
    - end
    plot(t2, y2, t, y, t3,y3, t4, y4)%, t2, y2, t4, y4),
    xlabel('Time t'), ylabel('Function y(t)')
    title('Problem 9.23: Scott Thomas')
    legend('\Delta t = 0.1', '\Delta t = 0.01', '\Delta t = 0.001','\Delta t = 0.0001','Location', 'SouthEast')
    %'\Delta t = 0.01', 'Exact Solution', 'Location', 'SouthEast')
    axis([[0 1 2 10])
```


Problem 9.24:

24. The following equation describes the temperature $T(t)$ of a certain object immersed in a liquid bath of constant temperature T_{b}.

$$
10 \frac{d T}{d t}+T=T_{b}
$$

Suppose the object's temperature is initially $T(0)=70^{\circ} \mathrm{F}$ and the bath temperature is $T_{b}=170^{\circ} \mathrm{F}$.
a. How long will it take for the object's temperature T to reach the bath temperature?
b. How long will it take for the object's temperature T to reach $168^{\circ} \mathrm{F}$?
c. Plot the object's temperature $T(t)$ as a function of time.

Use Euler's Method to solve this problem.

Problem setup:
Solve the differential equation for $d T / d t$:

$$
\frac{d T}{d t}=-\frac{1}{10} T+\frac{1}{10} T_{b}=\frac{1}{10}\left(T_{b}-T\right)=g(t, T)
$$

Approximate the derivative as follows:

$$
\frac{d T}{d t} \approx \frac{(T(t+\Delta t)-T(t))}{\Delta t}=g(t, T)
$$

where Δt is called the time step size. Solve for $T(t+\Delta t)$:

$$
T(t+\Delta t)=T(t)+g(t, T) \Delta t
$$

Put this equation into a form appropriate for computer solution. This is called the Difference Equation:

$$
T\left(t_{k+1}\right)=T\left(t_{k}\right)+g\left[t_{k}, T\left(t_{k}\right)\right] \Delta t ; \text { where } t_{k+1}=t_{k}+\Delta t
$$

Substitute the expression for $g(t, T)$ into the difference equation:

$$
T\left(t_{k+1}\right)=T\left(t_{k}\right)+\frac{1}{10}\left(T_{b}-T\left(t_{k}\right)\right) \Delta t
$$

In the problem statement, the initial condition is $T(0)=70$. Let $\Delta t=0.1$.
For $k=0$:

$$
T\left(t_{1}\right)=T\left(t_{0}\right)+\left[\frac{1}{10}\left(T_{b}-T\left(t_{0}\right)\right)\right] \Delta t=70.0+\left[\frac{1}{10}(170-70.0)\right](0.1)=71.0
$$

For $k=1$:

$$
T\left(t_{2}\right)=T\left(t_{1}\right)+\left[\frac{1}{10}\left(T_{b}-T\left(t_{1}\right)\right)\right] \Delta t=71.0+\left[\frac{1}{10}(170-71.0)\right](0.1)=71.99
$$

For $k=2$:

$$
T\left(t_{3}\right)=T\left(t_{2}\right)+\left[\frac{1}{10}\left(T_{b}-T\left(t_{2}\right)\right)\right] \Delta t=71.99+\left[\frac{1}{10}(170-71.99)\right](0.1)=72.9701
$$

```
| 1 l
% Problem 9.24
clear
clc
disp('Problem 9.24: Scott Thomas')
N = 10;
delta_t = 0.1;
T = zeros(1,N);
t = zeros(1,N);
T(1) = 70.0;
for k=1:N
    T(k+1) = T(k) + 1/10*(170 - T(k))*delta_t;
    t(k+1)=t(k) + delta_t;
end
t
```


$\mid{ }^{f x} \gg$

```
% Problem 9.24
    clear
    clc
    disp('Problem 9.24: Scott Thomas')
    N = 600;
    delta_t = 0.1;
    T = zeros (1,N);
    t = zeros(1,N);
    T(1) = 70.0;
    for k = 1:N
        T(k+1) = T(k) + 1/10*(170 - T(k))*delta_t;
    t(k+1) = t(k) + delta_t;
    end
    N1 = 6000;
    delta_t1 = 0.01;
    T1 = zeros(1,N1);
    t1 = zeros(1,N1);
    T1(1) = 70.0;
    for k = 1:N1
        T1 (k+1) = T1 (k) + 1/10*(170 - T1 (k))*delta_t1;
        t1(k+1) = t1(k) + delta_t1;
    end
    N2 = 60;
    delta_t2 = 1.0;
    T2 = zeros(1,N2);
    t2 = zeros (1,N2);
    T2(1) = 70.0;
    for k = 1:N2
        T2(k+1) = T2(k) + 1/10*(170 - T2(k))*delta_t2;
        t2(k+1) = t2(k) + delta_t2;
    end
    N3 = 6;
    delta_t3 = 10.0;
    T3 = \overline{zeros(1,N3);}
    t3 = zeros(1,N3);
    T3(1) = 70.0;
    for k=1:N3
        T3(k+1) = T3(k) + 1/10*(170 - T3(k))*delta_t3;
        t3(k+1) = t3(k) + delta_t3;
    end
    plot(t3,T3, t2, T2, t, T, t1, T1)
    xlabel('Time t (seconds)'), ylabel('Temperature T (degrees F)')
    title('Problem 9.24: Scott Thomas')
    %legend('\Delta t = 0.1','Location', 'SouthEast')
    legend('\Delta t = 10.0', '\Delta t = 1.0','\Delta t = 0.1', '\Delta t = 0.01', 'Location', 'SouthEast')
    axis([0 60 70 180])
```


Problem 9.25:

25.* The equation of motion of a rocket-propelled sled is, from Newton's law,

$$
m \dot{v}=f-c v
$$

where m is the sled mass, f is the rocket thrust, and c is an air resistance coefficient. Suppose that $m=1000 \mathrm{~kg}$ and $c=500 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$. Suppose also that $v(0)=0$ and $f=75,000 \mathrm{~N}$ for $t \geq 0$. Determine the speed of the sled at $t=10 \mathrm{~s}$.

Use the ode 15 s Solver for this problem.

```
function vdot = +925( ~,v )
f = 75000;% N
m = 1000;% kg
c = 500;% (N-s)/m
vdot = f/m - c/m* v;
end
```

```
    % Problem 9. }2
    clear
    clc
    disp('Problem 9.25: Scott Thomas')
    [t,v] = ode15s(@f925, [0, 10], 0 );
v;
plot(t,v), xlabel('time (s)')
ylabel('sled Speed (m/s)')
title('Problem 9.25: Scott Thomas')
    fprintf('sled Velocity at t = 10 seconds: v = %f\n', v(length(v)));
Problem 9.25: Scott Thomas
sled velocity at t = 10 seconds: v = 148.997458
```


28. The equation describing the water height h in a spherical tank with a drain at the bottom is

$$
\pi\left(2 r h-h^{2}\right) \frac{d h}{d t}=-C_{d} A \sqrt{2 g h}
$$

Suppose the tank's radius is $r=3 \mathrm{~m}$ and the circular drain hole has a radius of 2 cm . Assume that $C_{d}=0.5$ and that the initial water height is $h(0)=5 \mathrm{~m}$. Use $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.
a. Use an approximation to estimate how long it takes for the tank to empty.
b. Plot the water height as a function of time until $h(t)=0$.

Use the Euler Method to solve this problem.

Problem setup:
Solve the differential equation for $d h / d t$:

$$
\frac{d h}{d t}=-\frac{C_{d} A \sqrt{2 g h}}{\pi\left(2 r h-h^{2}\right)}
$$

Approximate the derivative as follows:

$$
\frac{d h}{d t} \approx \frac{(h(t+\Delta t)-h(t))}{\Delta t}=-\frac{C_{d} A \sqrt{2 g h}}{\pi\left(2 r h-h^{2}\right)}
$$

where Δt is the time step size. Solve for $h(t+\Delta t)$:

$$
h(t+\Delta t)=h(t)-\frac{C_{d} A \sqrt{2 g h}}{\pi\left(2 r h-h^{2}\right)} \Delta t
$$

Put this equation into a form appropriate for computer solution. This is called the Difference Equation:

$$
h\left(t_{k+1}\right)=h\left(t_{k}\right)-\frac{C_{d} A \sqrt{2 g h}}{\pi\left(2 r h-h^{2}\right)} \Delta t ; \quad \text { where } \quad t_{k+1}=t_{k}+\Delta t
$$

In the problem statement, the initial condition is $h(0)=5.0 \mathrm{~m}, r_{\text {Tank }}=3.0 \mathrm{~m}, r_{\text {Drain }}=2.0 \mathrm{~cm}=0.02 \mathrm{~m}$. Let $\Delta t=100.0$.

For $k=1$:

$$
\begin{aligned}
& h(1)=5.0 \\
& t(1)=0.0
\end{aligned}
$$

$$
\begin{gathered}
A=\pi r_{\text {Drain }}^{2}=\pi(0.02)^{2}=1.2566 \times 10^{-3} \mathrm{~m}^{2} \\
h(2)=h(1)-\frac{C_{d} A \sqrt{2 g h(1)}}{\pi\left[2 r h(1)-h(1)^{2}\right]} \Delta t \\
h(2)=(5.0)-\frac{(0.5)\left(1.2566 \times 10^{-3}\right) \sqrt{2(9.81)(5.0)}}{\pi\left[2(3.0)(5.0)-(5.0)^{2}\right]}(100.0)=4.9604 \\
t_{2}=t_{1}+\Delta t=0.0+100.0=100.0
\end{gathered}
$$

For $k=2$:

$$
\begin{gathered}
h(3)=h(2)-\frac{C_{d} A \sqrt{2 g h(2)}}{\pi\left[2 r h(2)-h(2)^{2}\right]} \Delta t \\
h(3)=(4.9604)-\frac{(0.5)\left(1.2566 \times 10^{-3}\right) \sqrt{2(9.81)(4.9604)}}{\pi\left[2(3.0)(4.9604)-(4.9604)^{2}\right]}(100.0)=4.9221 \\
t_{2}=t_{1}+\Delta t=100.0+100.0=200.0
\end{gathered}
$$

E Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 09 Homework\problem9_28_Euler.m

problem9_28_Euler.m x

```
1
    2 - clear
    3 - clc
    4- disp('Problem 9.28: Scott Thomas')
    \(r=3.0 ; \frac{9}{8} \mathrm{~m}\)
    rdrain \(=0.02\); \% m
    \(\mathrm{g}=9.81\); \%m/s^2
    \(\mathrm{Cd}=0.5\);
    \(\mathrm{A}=\mathrm{pi} *\) rdrain^2;
    \(\mathrm{N} 1=2\);
    delta_t1 \(=100.0\);
    \(\mathrm{t} 1(1)=0\);
    h1 (1) \(=5.0\);
    for \(k=1: N 1\)
        \(\mathrm{h} 1(\mathrm{k}+1)=\mathrm{h} 1(\mathrm{k})-\mathrm{Cd} * \mathrm{~A} * \operatorname{sqrt}(2 * \mathrm{~g} * \mathrm{~h} 1(\mathrm{k})) /\left(\mathrm{pi} *\left(2 * \mathrm{r} * \mathrm{~h} 1(\mathrm{k})-\mathrm{h} 1(\mathrm{k})^{\wedge} 2\right)\right) *\) delta_t1;
        \(t 1(k+1)=t 1(k)+\) delta_t1;
        if h1 \((k+1)<0\)
            \(h 1(k+1)=0 ;\)
        end
    end
    t1
    h1
    plot(t1,h1)
    xlabel('Time t (seconds)'), ylabel('Water Height (m)')
    title('Problem 9.28: Scott Thomas')
```


Command Window

Problem 9.28: Scott Thomas
t1 =

0100200
h1 =
$5.0000 \quad 4.9604 \quad 4.9221$

Editor - C:\Laptop Backup\matlab\Homework Solutions\Chapter 09 Homework\problem9_28_Euler.m*

problem9_28_Euler.m* ${ }^{*}$

```
1
2 - clear
    clc
    disp('Problem 9.28: Scott Thomas')
    \(\mathrm{r}=3.0\); \(\frac{8}{8} \mathrm{~m}\)
    rdrain \(=0.02\); \% m
    \(\mathrm{g}=9.81\); \(\frac{8}{8} \mathrm{~m} / \mathrm{s}^{\wedge} 2\)
    \(C d=0.5\);
    \(\mathrm{A}=\mathrm{pi}{ }^{*}\) rdrain^2;
    \(\mathrm{N} 1=253\);
    delta_t1 \(=100.0\);
    t1 (1) \(=0\);
    h1 (1) \(=5.0\);
    for \(k=1: N 1\)
        \(\mathrm{h} 1(\mathrm{k}+1)=\mathrm{h} 1(\mathrm{k})-\mathrm{Cd} * \mathrm{~A} * \operatorname{sqrt}(2 * \mathrm{~g} * \mathrm{~h} 1(\mathrm{k})) /\left(\mathrm{pi*}\left(2 * \mathrm{r} * \mathrm{~h} 1(\mathrm{k})-\mathrm{h} 1(\mathrm{k})^{\wedge} 2\right)\right) *\) delta_t1;
        t1 \((k+1)=t 1(k)+\) delta_t1;
        if h1 \((k+1)<0\)
            \(\mathrm{h} 1(\mathrm{k}+1)=0\);
        end
    end
    \(\mathrm{N} 2=2530\);
    delta_t2 = 10.0;
    t2 (1) \(=0\);
    h2 (1) \(=5.0\);
    for \(k=1: N 2\)
    \(h 2(k+1)=h 2(k)-C d * A * \operatorname{sqrt}(2 * g * h 2(k)) /\left(p i *\left(2 * r * h 2(k)-h 2(k)^{\wedge} 2\right)\right) * d e l t a \_t 2 ;\)
    \(t 2(k+1)=t 2(k)+\) delta_t2;
    if \(h 2(k+1)<0\)
        \(h 2(k+1)=0 ;\)
        end
    end
```

```
35
36- N3 = 25;
37-
38-
39 -
40 -
41 -
42 -
43-
44 -
45 -
46 -
4 7
48 -
49 -
50 -
51 -
52
```

```
delta_t3 = 1000.0;
```

delta_t3 = 1000.0;
t3(1) = 0;
t3(1) = 0;
h3(1) = 5.0;
h3(1) = 5.0;
for k = 1:N3
for k = 1:N3
h3(k+1) = h3(k) - Cd*A*sqrt(2*g*h3(k))/(pi*(2*r*h3(k) - h3(k)^2))*delta_t3;
h3(k+1) = h3(k) - Cd*A*sqrt(2*g*h3(k))/(pi*(2*r*h3(k) - h3(k)^2))*delta_t3;
t3(k+1) = t3(k) + delta_t3;
t3(k+1) = t3(k) + delta_t3;
if h3(k+1) < 0
if h3(k+1) < 0
h3 (k+1) = 0;
h3 (k+1) = 0;
end
end
end
end
plot(t3,h3, t1,h1, t2,h2)
plot(t3,h3, t1,h1, t2,h2)
xlabel('Time t (seconds)'), ylabel('Water Height (m)')
xlabel('Time t (seconds)'), ylabel('Water Height (m)')
title('Problem 9.28: Scott Thomas')
title('Problem 9.28: Scott Thomas')
legend('\Delta t = 1000 sec','\Delta t = 100 sec','\Delta t = 10 sec',...
legend('\Delta t = 1000 sec','\Delta t = 100 sec','\Delta t = 10 sec',...
'Location','Best')

```
    'Location','Best')
```

