ME 1020 Engineering Programming with MATLAB

Chapter 10 Homework Solutions: 10.5, 10.8, 10.10, 10.12, 10.16, 10.19, 10.23, 10.30

Topics Covered:

- Simulation Diagrams
- Simulink Models
- Library Browser
- Commonly-Used Blocks
- Transfer-Function Models
- Linear State-Variable Models
- Piecewise-Linear Models
- Subsystems

Problem 10.5:

5. A projectile is launched with a velocity of 100 m/s at an angle of 30° above the horizontal. Create a Simulink model to solve the projectile's equations of motion where x and y are the horizontal and vertical displacements of the projectile.

$$\ddot{x} = 0$$
 $x(0) = 0$ $\dot{x}(0) = 100 \cos 30^{\circ}$
 $\ddot{y} = -g$ $y(0) = 0$ $\dot{y}(0) = 100 \sin 30^{\circ}$

Use the model to plot the projectile's trajectory y versus x for $0 \le t \le 10 s$.

Simulation Diagram:

Simulink Model:

Note 1: Set the Initial Condition of the first *x* Integrator to 100 cos (30*pi/180): $[\dot{x}(0) = 100 \cos(30^\circ)]$ by double-clicking on the Integrator block. Set the Initial Condition of the first *y* Integrator to 100 sin (30*pi/180): $[\dot{y}(0) = 100 \sin(30^\circ)]$.

Note 2: Double-click on the To Workspace block. Set the Save format to Array.

Note 3: The Scope plot shows *x* and *y* versus *t*. Plot *y* versus *x* in the Command Window by typing:

>> plot(y(:,1),y(:,2))

Check results using ode45:

```
function xdot = f10_5x( t,x )
xdot(1) = x(2);
xdot(2) = 0;
xdot = [xdot(1); xdot(2)];
end
```

```
function ydot = f10_5y( t,y )
g = 9.81;
ydot(1) = y(2);
ydot(2) = -g;
ydot = [ydot(1); ydot(2)];
end
```

```
% Problem 10.5: Solve using ode45
clear
clc
disp('Problem 10.5: Scott Thomas')
[t,x] = ode45(@f10_5x, [0, 10], [0, 100*cos(30*pi/180)]);
[t,y] = ode45(@f10_5y, [0, 10], [0, 100*sin(30*pi/180)]);
plot(x(:,1), y(:,1))
ylabel('Height (m)')
xlabel('Position (m)')
title('Problem 10.5: Scott Thomas')
```

Problem 10.5: Scott Thomas

Problem 10.8:

8. A tank having vertical sides and a bottom area of 100 ft² is used to store water. To fill the tank, water is pumped into the top at the rate given in the following table. Use Simulink to solve for and plot the water height h(t) for $0 \le t \le 10$ min.

Time (min)	0	1	2	3	4	5	6	7	8	9	10
Flow Rate (ft ³ /min)	0	80	130	150	150	160	165	170	160	140	120

Volume as a function of tank height:

V = hA

Take the derivative of both sides (A = constant):

$$\frac{dV}{dt} = \frac{dh}{dt}A$$

Solve for the rate of change of the height of liquid in the tank:

$$\frac{dh}{dt} = \left(\frac{1}{A}\right)\frac{dV}{dt}$$
$$\dot{h} = \left(\frac{1}{A}\right)\dot{V}$$

where \dot{V} is the volumetric flow rate of liquid into the tank.

Simulink Model:

1-D Lookup Table: Linear Interpolation between data points.

Par Function Block Parameters: 1-D Lookup Table
Lookup Table (n-D)
Perform n-dimensional interpolated table lookup including index searches. The table is a sampled representation of a function in N variables. Breakpoint sets relate the input values to positions in the table. The first dimension corresponds to the top (or left) input port.
Table and Breakpoints Algorithm Data Types
Number of table dimensions: 1
Table data: [0,80,130,150,150,160,165,170,160,140,120]
Breakpoints 1: [0,1,2,3,4,5,6,7,8,9,10]
Edit table and breakpoints
Sample time (-1 for inherited): -1
OK Cancel Help Apply

Lookup Table Editor: problem1	0_8/1-D Lookup Tal	ble					
File Edit Plot Help							
🚈 😋 😼 🛛 Linear Ctrl+L	← →	_					
Models: Mesh Ctrl+M	Viewing "Lookup	Table (n-D)" b	lock data [T(:)]:				
🚺 problem10_8 🛛 🖝	Breakpoints	Column	(1)				
Table blocks:	Row				*		
····· <mark> 21-D Lookup Table</mark>	(1)	0	0				
	(2)	1	80				
	(3)	2	130				
	(4)	3	150		=		
	(5)	4	150				
	(6)	5	160				
	(7)	7	105				
	(9)	8	1/0				
	Data Type: Row:	double 🔻 C	olumn: double	▼ Table: double ▼	•		
	Dimension Selecto	or:					
Dimension size 11							
	Showing		All 🔻				
	Transpose disp	olay					
					.:		

Function Block Parameters: 1-D Lookup Table						
Lookup Table (n-D)						
Perform n-dimensional interpolated table lookup including index searches. The table is a sampled representation of a function in N variables. Breakpoint sets relate the input values to positions in the table. The first dimension corresponds to the top (or left) input port.						
Table and Breakpoints Algorithm Data Types						
Lookup method						
Interpolation method:						
Extrapolation method:						
Diagnostic for out-of-range input: None 🔍 🗖 Remove protection against out-of-range input in generated code						
Index search						
Index search method: Binary search 💌 🔲 Begin index search using previous index result						
Input settings						
Use one input port for all input data						
Code generation						
Support tunable table size in code generation						
OK Cancel Help Apply						


```
function hdot = \pm 10_8(t, \sim)
Vdot_data = [0 80 130 150 150 160 165 170 160 140 120];
t_data = [0:10];
Vdot = 0;
if.
      t >=0 & t < 1
   Vdot = Vdot_data(1) + (Vdot_data(2) - Vdot_data(1))*(t-t_data(1));
elseit t >=1 & t < 2
   Vdot = Vdot_data(2) + (Vdot_data(3) - Vdot_data(2))*(t-t_data(2));
elseif t >= 2 & t < 3
   Vdot = Vdot_data(3) + (Vdot_data(4) - Vdot_data(3))*(t-t_data(3));
elseif t >=3 & t < 4
   Vdot = Vdot_data(4) + (Vdot_data(5) - Vdot_data(4))*(t-t_data(4));
else1t t >=4 & t < 5
   Vdot = Vdot_data(5) + (Vdot_data(6) - Vdot_data(5))*(t-t_data(5));
elseif t >=5 & t < 6
   Vdot = Vdot_data(6) + (Vdot_data(7) - Vdot_data(6))*(t-t_data(6));
elseif t >= 6 & t < 7
   Vdot = Vdot_data(7) + (Vdot_data(8) - Vdot_data(7))*(t-t_data(7));
elseif t >=7 & t < 8
   Vdot = Vdot_data(8) + (Vdot_data(9) - Vdot_data(8))*(t-t_data(8));
elseif t >=8 & t < 9
   Vdot = Vdot_data(9) + (Vdot_data(10) - Vdot_data(9))*(t-t_data(9));
elseif t >=9 & t < 10
   Vdot = Vdot_data(10) + (Vdot_data(11) - Vdot_data(10))*(t-t_data(10));
end
hdot = (1/100)*Vdot;
```

```
end
```

```
% Problem 10.8
clear
clc
disp('Problem 10.8: Scott Thomas')
[th,h] = ode45(@+10_8, [0, 10], 0);
Vdot_data = [0 80 130 150 150 160 165 170 160 140 120];
t_data = [0:10];
N = 1000;
t = Inspace(0, 10, N);
Vdot = zeros(1,N);
for k = 1:N
      t(k) >=0 & t(k) < 1
if
   Vdot(k) = Vdot_data(1) + (Vdot_data(2) - Vdot_data(1))*(t(k)-t_data(1));
elsent t(k) >=1 & t(k) < 2
   Vdot(k) = Vdot_data(2) + (Vdot_data(3) - Vdot_data(2))*(t(k)-t_data(2));
elseif t(k) >=2 & t(k) < 3
   Vdot(k) = Vdot_data(3) + (Vdot_data(4) - Vdot_data(3))*(t(k)-t_data(3));
elseif t(k) >=3 \& t(k) < 4
   Vdot(k) = Vdot_data(4) + (Vdot_data(5) - Vdot_data(4))*(t(k)-t_data(4));
elsent t(k) >= 4 \& t(k) < 5
```

```
Vdot(k) = Vdot_data(5) + (Vdot_data(6) - Vdot_data(5))*(t(k)-t_data(5));
elsent t(k) >= 5 \& t(k) < 6
    Vdot(k) = Vdot_data(6) + (Vdot_data(7) - Vdot_data(6))*(t(k)-t_data(6));
elseif t(k) >= 6 \& t(k) < 7
    Vdot(k) = Vdot_data(7) + (Vdot_data(8) - Vdot_data(7))*(t(k)-t_data(7));
elseif t(k) >= 7 \& t(k) < 8
    Vdot(k) = Vdot_data(8) + (Vdot_data(9) - Vdot_data(8))*(t(k)-t_data(8));
elsent t(k) >=8 & t(k) < 9
    Vdot(k) = Vdot_data(9) + (Vdot_data(10) - Vdot_data(9))*(t(k)-t_data(9));
elseif t(k) >=9 & t(k) < 10
    Vdot(k) = Vdot_data(10) + (Vdot_data(11) - Vdot_data(10))*(t(k)-t_data(10));
end
end
subplot(2,1,1)
plot(t,Vdot)%, xlabel('time (min)')
ylabel('Volumetric Flow Rate (tt^3/min)')
title('Problem 10.8: Scott Thomas')
subplot(2,1,2)
plot(th,h), xlabel('time (min)')
ylabel('Tank Liquid Height (ft)')
```

```
Problem 10.8: Scott Thomas
```


Problem 10.10:

10. Construct a Simulink model to plot the solution of the following equations for $0 \le t \le 3$

$$\dot{x}_1 = -6x_1 + 4x_2 + f_1(t)$$
$$\dot{x}_2 = 5x_1 - 7x_2 + f_2(t)$$

where $f_1(t)$ is a step function of height 3 starting at t = 0 and $f_2(t)$ is a step function of height -3 starting at t = 1.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -6 & 4 \\ 5 & -7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} f_1(t) \\ f_2(t) \end{bmatrix}$$
$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$
$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} f_1(t) \\ f_2(t) \end{bmatrix}$$
$$\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$$

() • E	Source Block Parameters: f_1(t)
	Step
0	Output a step.
- 1	Parameters
	Step time:
	0
	Initial value:
	0
	Final value:
f_1(t)	3
	Sample time:
	0
	✓ Interpret vector parameters as 1-D
f_2(t)	Enable zero-crossing detection
	OK Cancel Help Apply

	Source Block Parameters: f_2(t)
	Step
	Output a step.
	Parameters
	Step time:
f 1(t)	1
_ (()	Initial value:
	0
	Final value:
f_2(t)	-3
	Sample time:
	0
	Interpret vector parameters as 1-D
	Enable zero-crossing detection
	OK Cancel Help Apply

Function Block Parameters: State-Space	×		
State Space		-	● ▼ 2
State-space model:			
dx/dt = Ax + Bu y = Cx + Du			
Parameters			
A:			
[-6, 4; 5 -7]			
В:			
[0, 1; 1, 0]			
C:		_	
[1, 0; 0,1]			v = Cx + Du
D:			Ctata Space
[0, 0;0, 0]			State-Space
Initial conditions:			
0			
Absolute tolerance:			
auto			
State Name: (e.g., 'position')			
п		-	
		-	
OK Cancel Help A	Apply		


```
Command Window
```

>> plot(tout,x(:,1),tout,x(:,2))

$f_{x} >>$ - 0 **x** 📣 Figure 1 File Edit View Insert Tools Desktop Window Help 3 🗋 🖆 🛃 🌭 | 🔍 🄍 🖤 🐌 🐙 🖌 - | 🛃 | 🗖 📰 | 💷 🛄 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 L 2 2.5 0.5 1.5 1 3

```
function xdot = f10_10(t,x)
f1 = 3;
if t > 1
    f2 = -3;
else
    t2 = 0;
end
xdot(1) = -6*x(1) + 4*x(2) + f1;
xdot(2) = 5*x(1) - 7*x(2) + f2;
```

```
xdot = [xdot(1); xdot(2)];
end
```

```
% Problem 10.10: Solve using ode45/matrix method
clear
clc
disp('Problem 10.10: Scott Thomas')
[t,x] = ode45(@f10_10, [0, 3], [0, 0] );
plot(t,x(:,1),t, x(:,2)), xlabel('Time (s)')
ylabel('x(t)')
title('Problem 10.10: Scott Thomas')
legend('x_1(t)', 'x_2(t)','Location', 'Best')
```


Problem 10.12:

12. Construct a Simulink model of the following problem.

$$5\dot{x} + \sin x = f(t)$$
 $x(0) = 0$

The forcing function is

$$f(t) = \begin{cases} -5 & \text{if } g(t) \le -5 \\ g(t) & \text{if } -5 \le g(t) \le 5 \\ 5 & \text{if } g(t) \ge 5 \end{cases}$$

where $g(t) = 10 \sin 4t$.

$$\dot{x} = \frac{1}{5} [f(t) - \sin x]$$
$$x = \int \left\{ \frac{1}{5} [f(t) - \sin x] \right\}$$

Simulation Anal			
	Source Block Parameters: Sine Wave		
	Number of offset samples = Phase * Samples per period / (2*pi)		
:m10_12	Use the sample-based sine type if numerical problems due to running		
problem10_12	for large times (e.g. overflow in absolute time) occur.		
	Parameters		
	Sine type: Time based 🔹		
	Time (t): Use simulation time		
	Amplitude:		
A.	10		
	Bias:		
	0		
Sine Wave	Frequency:		
	4		
	Phase (rad):		
	0		
	Sample time:		
	0		
	☑ Interpret vector parameters as 1-D		
	4 III		
	OK Cancel Help Apply		

	Function Block Parameters: Saturation	×						
	Saturation							
	Limit input signal to the upper and lower saturation values.							
	Main Signal Attributes							
	Upper limit:							
_	5							
	Lower limit:							
1	-5							
Saturation	Treat as gain when linearizing							
	Enable zero-crossing detection							
	Sample time (-1 for inherited):							
	5							
Scope	OK Cancel Help A	pply						

Function Block Parameters: Integrator	×	
Integrator	^	
Continuous-time integration of the input signal.		
Parameters		
External reset: none	•	
Initial condition source: internal	•	
Initial condition:		
0		
E Limit output	Ξ	
Upper saturation limit:		1
inf		i s
Lower saturation limit:		
-inf		jj
Show saturation port		
Show state port		
Absolute tolerance:		1
auto		
Ignore limit and reset when linearizing		
Enable zero-crossing detection	-	
OK Cancel Help	Apply	

Problem 10.16:

16. Refer to Problem 15. Use the simulation with $q_{\text{max}} = 8 \times 10^5$ to compare the energy consumption and the thermostat cycling frequency for the two temperature bands (69°, 71°) and (68°, 72°).

Temperature versus time for 2 hours: This shows the two deadband ranges.

Heat Input over 24 hours: The two traces are nearly identical

Problem 10.19:

19. Use Transfer Function blocks to construct a Simulink model to plot the solution of the following equations for $0 \le t \le 2$.

$$3\ddot{x} + 15\dot{x} + 18x = f(t) \quad x(0) = \dot{x}(0) = 0$$

$$2\ddot{y} + 16\dot{y} + 50y = x(t) \quad y(0) = \dot{y}(0) = 0$$

where $f(t) = 75u_s(t)$.

Problem 10.23:

23. Create a Simulink model to plot the solution of the following equation for $0 \le t \le 3$.

 $\dot{x} + 10x^2 = 5 \sin 3t$ x(0) = 1

Problem 10.30:

- **30.** *a*. Use the subsystem block developed in Section 10.7 to construct a Simulink model of the system shown in Figure P30. The mass inflow rate is a step function.
 - b. Use the Simulink model to obtain plots of $h_1(t)$ and $h_2(t)$ for the following parameter values: $A_1 = 3 \text{ ft}^2$, $A_2 = 5 \text{ ft}^2$, $R_1 = 30 \text{ ft}^{-1} \cdot \text{sec}^{-1}$, $R_2 = 40 \text{ ft}^{-1} \cdot \text{sec}^{-1}$, $\rho = 1.94 \text{ slug/ft}^3$, $q_{mi} = 0.5 \text{ slug/sec}$, $h_1(0) = 2 \text{ ft}$, and $h_2(0) = 5 \text{ ft}$.

Figure P30


```
% Problem 10.30 Script File
clc
clear
disp('Problem 10.30: Scott Thomas')
A1 = 3;% ft^2 Bottom Area of Tank 1
A2 = 5;% ft^2 Bottom Area of Tank 1
R_L1 = 1E6;% m^(-1)*s^(-1) No flow through the left-hand inlet
R_R1 = 30;\% ft^{-1}*s^{-1}
R_L2 = 30;% ft^(-1)*s^(-1) One resistance between tanks: R_R1 = R_L2 = R_1
R_R2 = 40;\% ft^{-1}*s^{-1}
rho = 1.94;% kg/m^3
g = 32.2;% m/s^2
h01 = 2;% ft Initial height in Tank 1
h02 = 5;% ft Initial height in Tank 1
qmi1 = 2.5;% kg/s Input flow into Tank 1
timestep1 = 10;% s Time when Input flow into Tank 1 is turned on
```

Problem 10.30: Scott Thomas

