ME 1020 Engineering Programming with MATLAB

Chapter 10 Homework Solutions: 10.5, 10.8, 10.10, 10.12, 10.16, 10.19, 10.23, 10.30

Topics Covered:

- Simulation Diagrams
- Simulink Models
- Library Browser
- Commonly-Used Blocks
- Transfer-Function Models
- Linear State-Variable Models
- Piecewise-Linear Models
- Subsystems

Problem 10.5:

5. A projectile is launched with a velocity of $100 \mathrm{~m} / \mathrm{s}$ at an angle of 30° above the horizontal. Create a Simulink model to solve the projectile's equations of motion where x and y are the horizontal and vertical displacements of the projectile.

$$
\begin{array}{lll}
\ddot{x}=0 & x(0)=0 & \dot{x}(0)=100 \cos 30^{\circ} \\
\ddot{y}=-g & y(0)=0 & \dot{y}(0)=100 \sin 30^{\circ}
\end{array}
$$

Use the model to plot the projectile's trajectory y versus x for $0 \leq t \leq 10 s$.

Simulation Diagram:

Note 1: Set the Initial Condition of the first x Integrator to $100 \cos \left(30^{*} \mathrm{pi} / 180\right)$: $\left[\dot{x}(0)=100 \cos \left(30^{\circ}\right)\right]$ by double-clicking on the Integrator block. Set the Initial Condition of the first y Integrator to $100 \sin \left(30^{*} \mathrm{pi} / 180\right): \quad\left[\dot{y}(0)=100 \sin \left(30^{\circ}\right)\right]$.

Note 2: Double-click on the To Workspace block. Set the Save format to Array.
Note 3: The Scope plot shows x and y versus t. Plot y versus x in the Command Window by typing:
>> plot(y(:,1),y(:,2))
亘

Time offset: 0

Command Window
>> plot(y (: , 1) ,y(: 2))
$f_{x} \gg$

Check results using ode45:

```
function xdot = f10_5x(t,x )
xdot(1) = x(2);
xdot(2) = 0;
xdot = [xdot(1); xdot(2)];
end
```

```
function ydot = f10_5y( t,y )
g = 9. 81;
ydot(1) = y(2);
ydot(2) = -g;
ydot = [ydot(1); ydot(2)];
end
```

\% Problem 10.5: Solve using ode45
clear
clc
disp('Problem 10.5: scott Thomas')
$[t, x]=$ ode45(@f10_5x, [0, 10], $\left.\left[0,100^{*} \cos \left(30^{*} \mathrm{pi} / 180\right)\right]\right)$;
$[\mathrm{t}, \mathrm{y}]=$ ode45 (@f10_5y, [0, 10], $[0,100 * \sin (30 * \mathrm{pi} / 180)])$;
plot(x(:,1), y(:,1))
ylabel('Height (m)')
xlabel('Position (m)')
title('Problem 10.5: Scott Thomas')

Problem 10.8:

8. A tank having vertical sides and a bottom area of $100 \mathrm{ft}^{2}$ is used to store water. To fill the tank, water is pumped into the top at the rate given in the following table. Use Simulink to solve for and plot the water height $h(t)$ for $0 \leq t \leq 10 \mathrm{~min}$.

Time (min)	0	1	2	3	4	5	6	7	8	9	10
Flow Rate $\left(\mathrm{ft}^{3} / \mathrm{min}\right)$	0	80	130	150	150	160	165	170	160	140	120

Volume as a function of tank height:

$$
V=h A
$$

Take the derivative of both sides $(A=$ constant $)$:

$$
\frac{d V}{d t}=\frac{d h}{d t} A
$$

Solve for the rate of change of the height of liquid in the tank:

$$
\begin{aligned}
\frac{d h}{d t} & =\left(\frac{1}{A}\right) \frac{d V}{d t} \\
\dot{h} & =\left(\frac{1}{A}\right) \dot{V}
\end{aligned}
$$

where \dot{V} is the volumetric flow rate of liquid into the tank.

Simulink Model:

1-D Lookup Table: Linear Interpolation between data points.

```
I. Function Block Parameters: 1-D Lookup Table
    Lookup Table (n-D)
Perform n-dimensional interpolated table lookup including index searches. The table is a sampled representation of a function in \(N\) variables. Breakpoint sets relate the input values to positions in the table. The first dimension corresponds to the top (or left) input port.
```



```
Edit table and breakpoints...
Sample time ( -1 for inherited): -1


Lookup Table（ \(\mathrm{n}-\mathrm{D}\) ）
Perform n－dimensional interpolated table lookup including index searches．The table is a sampled representation of a function in N variables．Breakpoint sets relate the input values to positions in the table．The first dimension corresponds to the top（or left）input port．


Input settings
\(\square\) Use one input port for all input data
Code generation
Support tunable table size in code generation

Scope1 \(\square\)
\(\square\)

Time offset： 0

```

tunction hdot = +10_8(t,~)
Vdot_data = [llllllllllll
t_data = \lfloor0:10\rfloor;
Vdot = 0;
if }\quadt>=0\&t<
Vdot = Vdot_data(1) + (Vdot_data(2) - Vdot_data(1))*(t-t_data(1));
elsent t >=1 \& t < 2
Vdot = Vdot_data(2) + (Vdot_data(3) - Vdot_data(2))*(t-t_data(2));
elseif }t>=2\&t<
Vdot = Vdot_data(3) + (Vdot_data(4) - Vdot_data(3))*(t-t_data(3));
elseif t >=3 \& t < 4
Vdot = Vdot_data(4) + (Vdot_data(5) - Vdot_data(4))*(t-t_data(4));
elsent t >=4 \& t < 5
Vdot = Vdot_data(5) + (Vdot_data(6) - Vdot_data(5))*(t-t_data(5));
elseif t>=5 \& t < 6
Vdot = Vdot_data(6) + (Vdot_data(7) - Vdot_data(6))*(t-t_data(6));
elseif t >=6 \& t < 7
Vdot = Vdot_data(7) + (Vdot_data(8) - Vdot_data(7)) *(t-t_data(7));
elsent t >=7 \& t < 8
Vdot = Vdot_data(8) + (Vdot_data(9) - Vdot_data(8)) *(t-t_data(8));
elseif t>=8 \& t < 9
Vdot = Vdot_data(9) + (Vdot_data(10) - Vdot_data(9))*(t-t_data(9));
elseif t >=9 \& t < 10
Vdot = Vdot_data(10) + (Vdot_data(11) - Vdot_data(10))*(t-t_data(10));
end

```
hdot \(=(1 / 100) *\) Vdot;
end
\% Problem 10.8
clear
clc
disp('Problem 10.8: Scott Thomas')
\(\lfloor\) th,h \(\rfloor=\) ode45 (@+10_8, \(\lfloor 0,10\rfloor, 0)\);
Vdot_data \(=\left[\begin{array}{lllllllllll}0 & 80 & 130 & 150 & 150 & 160 & 165 & 170 & 160 & 140 & 120\end{array}\right] ;\)
t_data \(=\lfloor 0: 10\rfloor\);
\(\mathrm{N}=1000 ;\)
\(t=11 n s p a c e(0,10, N)\);
Vdot \(=\operatorname{zeros}(1, N)\);
for \(k=1: N\)
if \(\quad t(k)>=0 \& t(k)<1\)
    \(V \operatorname{dot}(k)=V d o t \_d a t a(1)+\left(V d o t \_d a t a(2)-V d o t \_d a t a(1)\right) *\left(t(k)-t \_d a t a(1)\right) ;\)
else1t \(t(k)>=1 \& t(k)<2\)
    \(V \operatorname{dot}(k)=V d o t \_d a t a(2)+\left(V d o t \_d a t a(3)-V d o t \_d a t a(2)\right) *\left(t(k)-t \_d a t a(2)\right) ;\)
elseif \(t(k)>=2 \& t(k)<3\)
    \(V \operatorname{dot}(k)=V d o t \_d a t a(3)+\left(V d o t \_d a t a(4)-V d o t \_d a t a(3)\right) *\left(t(k)-t \_d a t a(3)\right) ;\)
elseif \(t(k)>=3 \& t(k)<4\)
    \(V \operatorname{dot}(k)=V d o t \_d a t a(4)+\left(V d o t \_d a t a(5)-V d o t \_d a t a(4)\right) *\left(t(k)-t \_d a t a(4)\right)\);
elsent \(t(k)>=4 \& t(k)<5\)
```

 Vdot(k) = Vdot_data(5) + (Vdot_data(6) - Vdot_data(5))*(t(k)-t_data(5));
 else1t t(k)>=5 \& t(k) < 6
Vdot(k) = Vdot_data(6) + (Vdot_data(7) - Vdot_data(6))*(t(k)-t_data(6));
elseif t(k)>=6 \& t(k) < 7
Vdot(k) = Vdot_data(7) + (Vdot_data(8) - Vdot_data(7))*(t(k)-t_data(7));
elseif t(k)>=7 \& t(k) < 8
Vdot(k) = Vdot_data(8) + (Vdot_data(9) - Vdot_data(8))*(t(k)-t_data(8));
else1t t(k) >=8 \& t(k) < 9
Vdot(k) = Vdot_data(9) + (Vdot_data(10) - Vdot_data(9))*(t(k) -t_data(9));
elseif t(k) >=9 \& t(k) < 10
Vdot(k) = Vdot_data(10) + (Vdot_data(11) - Vdot_data(10))*(t(k)-t_data(10));
end
end
subplot (2,1,1)
plot(t,Vdot)%, xlabel('time (min)')
ylabel('Volumetric Flow Rate (tt^3/mın)')
title('Problem 10.8: Scott Thomas')
subp lot(2,1,2)
plot(th,h), xlabel('time (min)')
ylabel('Tank Loquid Herght (tt)')

```

Problem 10.8: Scott Thomas

10. Construct a Simulink model to plot the solution of the following equations for \(0 \leq t \leq 3\)
\[
\begin{gathered}
\dot{x}_{1}=-6 x_{1}+4 x_{2}+f_{1}(t) \\
\dot{x}_{2}=5 x_{1}-7 x_{2}+f_{2}(t)
\end{gathered}
\]
where \(f_{1}(t)\) is a step function of height 3 starting at \(t=0\) and \(f_{2}(t)\) is a step function of height -3 starting at \(t=1\).
\[
\begin{gathered}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-6 & 4 \\
5 & -7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
f_{1}(t) \\
f_{2}(t)
\end{array}\right]} \\
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{B} u \\
{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
f_{1}(t) \\
f_{2}(t)
\end{array}\right]} \\
\mathbf{y}=\mathbf{C x}+\mathbf{D u}
\end{gathered}
\]





```

Command Window
>> plot(tout,x(:,1), tout,x(:,2))
fx >>

```
Figure 1
\begin{tabular}{|l|l|l|}
\hline\(\square\) & 回 & \(X\) \\
\hline
\end{tabular}


```

function $x d o t=f 10 _10(t, x)$
f1 $=3$;
if $t>1$
f2 $=-3$;
else
$+2=0 ;$
end
$x \operatorname{dot}(1)=-6^{*} x(1)+4^{*} x(2)+f 1$;
$x \operatorname{dot}(2)=5^{*} x(1)-7^{*} x(2)+f 2$;
$x d o t=[x \operatorname{dot}(1) ; x \operatorname{dot}(2)]$;
end

```
\% Problem 10.10: Solve using ode45/matrix method
clear
clc
disp('Problem 10.10: Scott Thomas')
\([t, x]=\) ode45(@f10_10, \([0,3],[0,0])\);
plot ( \(t, x(:, 1), t, x(:, 2)\) ), \(x\) label('Time (s)')
ylabel ('x ( \(t\) )')
title('Problem 10.10: Scott Thomas')
legend('x_1(t)', 'x_2(t)','Location', 'Best')


Problem 10.12:
12. Construct a Simulink model of the following problem.
\[
5 \dot{x}+\sin x=f(t) \quad x(0)=0
\]

The forcing function is
\[
f(t)= \begin{cases}-5 & \text { if } g(t) \leq-5 \\ g(t) & \text { if }-5 \leq g(t) \leq 5 \\ 5 & \text { if } g(t) \geq 5\end{cases}
\]
where \(g(t)=10 \sin 4 t\).
\[
\begin{gathered}
\dot{x}=\frac{1}{5}[f(t)-\sin x] \\
x=\int\left\{\frac{1}{5}[f(t)-\sin x]\right\}
\end{gathered}
\]


\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & \multicolumn{5}{|l|}{图 Function Block Parameters: Saturation \(x\)} \\
\hline & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Saturation \\
Limit input signal to the upper and lower saturation values.
\end{tabular}}} \\
\hline & & & & & \\
\hline & Main & Signal Attributes & & & \\
\hline & \multicolumn{5}{|l|}{Upper limit:} \\
\hline & \multicolumn{5}{|l|}{5} \\
\hline 1 & \multicolumn{5}{|l|}{Lower limit:} \\
\hline \(\Lambda\) & \multicolumn{5}{|l|}{-5} \\
\hline \multirow[t]{3}{*}{Saturatio} & \multicolumn{5}{|l|}{\(\checkmark\) Treat as gain when linearizing} \\
\hline & \multicolumn{5}{|l|}{V Enable zero-crossing detection} \\
\hline & \multicolumn{5}{|l|}{Sample time (-1 for inherited):} \\
\hline & \multicolumn{5}{|l|}{-1} \\
\hline Scope & (3) & OK & Cancel & Help & Apply \\
\hline
\end{tabular}




\section*{Problem 10.16:}
16. Refer to Problem 15. Use the simulation with \(q_{\max }=8 \times 10^{5}\) to compare the energy consumption and the thermostat cycling frequency for the two temperature bands \(\left(69^{\circ}, 71^{\circ}\right)\) and \(\left(68^{\circ}, 72^{\circ}\right)\).


Temperature versus time for 2 hours: This shows the two deadband ranges.


Heat Input over 24 hours: The two traces are nearly identical


Problem 10.19:
19. Use Transfer Function blocks to construct a Simulink model to plot the solution of the following equations for \(0 \leq t \leq 2\).
\[
\begin{array}{ll}
3 \ddot{x}+15 \dot{x}+18 x=f(t) & x(0)=\dot{x}(0)=0 \\
2 \ddot{y}+16 \dot{y}+50 y=x(t) & y(0)=\dot{y}(0)=0
\end{array}
\]
where \(f(t)=75 u_{s}(t)\).


23. Create a Simulink model to plot the solution of the following equation for \(0 \leq t \leq 3\).
\[
\dot{x}+10 x^{2}=5 \sin 3 t \quad x(0)=1
\]



30. \(a\). Use the subsystem block developed in Section 10.7 to construct a Simulink model of the system shown in Figure P30. The mass inflow rate is a step function.
\(b\). Use the Simulink model to obtain plots of \(h_{1}(t)\) and \(h_{2}(t)\) for the following parameter values: \(A_{1}=3 \mathrm{ft}^{2}, A_{2}=5 \mathrm{ft}^{2}, R_{1}=30 \mathrm{ft}^{-1} \cdot \mathrm{sec}^{-1}\), \(R_{2}=40 \mathrm{ft}^{-1} \cdot \mathrm{sec}^{-1}, \rho=1.94 \mathrm{slug} / \mathrm{ft}^{3}, q_{m i}=0.5 \mathrm{slug} / \mathrm{sec}, h_{1}(0)=2 \mathrm{ft}\), and \(h_{2}(0)=5 \mathrm{ft}\).


Figure P30


国 problem10_30 Tank1





Time offset: 0```

