Chapter 1: An Overview of MATLAB

MATLAB is:

A high-level language and interactive environment for numerical computation, visualization, and programming

MATLAB can:

Be used as a calculator, easily create scalars, vectors and arrays, be used as a programming environment, make sophisticated plots, be used to create models that describe experimental data, solve statistics and probability problems, solve systems of linear algebraic equations, solve differential equations

MATLAB is used for:

Finite element analysis, computational fluid dynamics, signal processing and communications, image and video processing, control systems, test and measurement, etc.

MATLAB is used by:

More than a million engineers and scientists in industry and academia

Chapter 1: An Overview of MATLAB

Chapter 1 Topics Covered:

- MATLAB Windows: Current Folder, Command, Workspace, Command History
- Using MATLAB as a Calculator
 - Mathematical Operators
 - Clearing Windows
 - Assignment Operator
- Using MATLAB Script Files
 - Creating/Saving/Editing/Executing Script Files
 - Changing the Destination Folder
 - Using the Editor Window
 - Built-In Functions
 - Search Documentation
 - Order of Mathematical Precedence
 - Creating Arrays and using them in Calculations
 - Creating Plots with Arrays (Graphics Window)
 - Creating Arrays Automatically
 - Understanding Error Signals and Error Messages
 - Publishing MATLAB Files

Using MATLAB as a Calculator

Open MATLAB.

Mathematical Operators

Symbol	Operation	MATLAB form
^	exponentiation: a^b	a^b
*	multiplication: ab	a*b
/	right division: $a/b = \frac{a}{b}$	a/b
\	left division: $a \setminus b = \frac{b}{a}$	a\ b
+	addition: $a + b$	a+b
-	subtraction: $a - b$	a-b

Type the following commands into the **Command Window** to solve Problem 1.1(a):

>> x=10; >> y=3; >> u=x+y

- 1. Make sure you know how to start and quit a MATLAB session. Use MATLAB to make the following calculations, using the values x = 10, y = 3. Check the results by using a calculator.
 - a. u = x + yb. v = xyc. w = x / yd. $z = \sin x$ e. $r = 8 \sin y$ f. $s = 5 \sin (2y)$

The output of the calculation appears in the **Command Window**.

The semi-colon (;) suppresses output to the **Command Window**.

The Workspace Window shows the names and values of the Variables.

The **Command History Window** shows the entered commands.

Previous commands can be accessed quickly by using the Up Arrow and Down Arrow. Try this!

Co	ommand Window 💿	Workspace	1			\odot
	>> x=10;	Name 🔺	Value	Min	Max	
	>> y=3;	🕂 u	13	13	13	
	>> u = x + y	🛨 x	10	10	10	
		🖶 y	3	3	3	
	u =		W	/orkspace Wi	ndow	
	13					\odot
		Command	History			
fx	>> Command Window				nand History Vindow	y •

Clear the **Command Window** by typing **clc** (and hit enter) into the **Command Window**.

Co	mmand Window 💿	Workspace	2			$\overline{\mathbf{O}}$
	>> x=10;	Name 🔺	Value	Min	Max	
	>> y=3;	🔣 u	13	13	13	
	>> u = x + y	🛨 x	10	10	10	
		🖿 y	3	3	3	
	u =					
	13					
		Command	History			\odot
f <u>x</u>	>> clc	x=1	LO;			*
		- y=3	3;			
		<u> </u>	x + y			Ŧ

Remove all of the variables from the **Workspace** by typing the command **clear** in the **Command Window**.

Command Window 💿	Workspace				
>> clear f <u>x</u> >>	Name 📥	Value	Min	Max	
	Command u = clc clc	х + у			•

In the previous example, the equals sign (=) is called the **Assignment or Replacement Operator**. Type in the following session to demonstrate that the **Assignment Operator** is different than the **equals** sign in mathematics.

Co	ommand Window	\odot
(New to MATLAB? Watch this Video, see Examples, or read Getting Started.	×
	>> clear	
	>> x=5	
	x =	
	-	
	5	
	>> x=x+1	
	x =	
	6	
	>> x=x^2	
	x =	
	36	
fr		
J.	>>	

The second command line that was typed in is shown in the **Command History Window** below. It states the following:

"Replace variable **x** with the current contents of variable **x** plus 1."

In the third command line, the caret symbol (^) denotes exponentiation.

"Replace variable **x** with the current contents of variable **x** raised to the second power."

Command History	$\overline{\mathbf{v}}$
	%
x= 5	
x=x+1	
x=x^2	

Use MATLAB to solve Problem 1.3(a) as shown below:

3. Suppose that x = 3 and y = 4. Use MATLAB to compute the following, and check the results with a calculator.

a.
$$\left(1 - \frac{1}{x^5}\right)^{-1}$$
 b. $3\pi x^2$ c. $\frac{3y}{4x - 8}$ d. $\frac{4(y - 5)}{3x - 6}$

Command Window

New to MATLAB? Watch this <u>Video</u> ,
>> x=3; >> u=(1-1/x^5)^(-1)
νν u=(1-1/x 3) (-1)
u =
1.0041
$f_{\frac{x}{2}} >>$

Using MATLAB Script Files

Another method of computation is to create a **Script File**, which is a way to store commands to be executed in the **Command Window**. Use the **Home/New Script** tab to create a new **Script File**:

The new window that has appeared is called the **Editor/Debugger**. Use the **Editor** in MATLAB to solve Problem 1.3(a) by typing the following.

3. Suppose that x = 3 and y = 4. Use MATLAB to compute the following, and check the results with a calculator.

a.
$$\left(1 - \frac{1}{x^5}\right)^{-1}$$
 b. $3\pi x^2$ c. $\frac{3y}{4x - 8}$ d. $\frac{4(y - 5)}{3x - 6}$

Before saving, change the folder that MATLAB saves files to (the **Destination Folder**) by pushing the **Browse for Folder** button:

Select the **Desktop** folder to be the **Destination Folder**.

Save the file using the **Save** button. MATLAB **Script File** names must start with a letter, and the only special character allowed is the underscore. Numbers are allowed, as long as the number is not the first character. Spaces are not allowed.

The file appears in the Desktop folder as a ***.m file**. The **Script File** must be saved prior to execution. Press the green **Run** button to execute the Script file. Alternatively, pressing the **Run** button will automatically save the **Script File**.

The results of the calculation appear in the **Command Window**. Notice that the values shown in the **Workspace Window** have changed.

MATLAB will give you clues when you make a mistake in your equations. Delete the last parenthesis in the equation. Notice that the square becomes red, and a red line appears at the line that has the mistake. Also, a squiggly line appears where MATLAB thinks the error lies.

Hover the cursor over the red line: EOL stands for End Of Line.

Make the following change in the **Script File** and save the program using the **Save Button** under the **Editor** drop-down menu prior to running the program.

In the modified **Script File**, the built-in variable **pi** was used. Other built-in functions exist, as shown in the following session where Problem 1.16(a) is to be solved.

MATLAB syntax ¹
exp(x)
sqrt(x)
log(x)
log10(x)
$\cos(x)$
sin(x)
tan(x)
acos(x)
asin(x)
atan(x)

¹The MATLAB trigonometric functions use radian measure.

16. Use MATLAB to calculate

a. $6\pi \tan^{-1}(12.5) + 4$ b. $5 \tan [3 \sin^{-1}(13/5)]$ c. $5 \ln(7)$ d. $5 \log(7)$

Check your answers with a calculator.

Create a new **Script File** using the **New File Button** on the **Editor**. MATLAB gives the new file the temporary name **Untitled2**.

Editor - C:\Users\scott\Desktop\Problem1_3a.m							
EDITOR	PUBLISH	VIEW	<u>H</u> AN		<u>%</u> b c	5000	2 🖸 🔼
New Open Sa	Print 👻	EDIT NAVIGATE	Breakpoints	Nun Run an Time	Advance	Run Section Advance	
Problem1_3a.m	FILE		BREAKPOINTS		RUN		
1 - x=3;	 L/x^5)^(-1) L*x^2						
		script			Ln	4 Col 1	OVR .::

Type in the following to calculate the equation given in Problem 1.16(a). Get in the habit of typing in the first two commands to clear the command window and to clear the variables stored in memory.

$$6\pi \tan^{-1}(12.5) + 4$$

Save it to the Desktop using the **Save As** drop-down menu:

A Select File for Save	As	×
💭 🗢 🔳 Deskt	op 🕨 👻 😽 Search Desktop	٩
Organize 🔻 Ne	w folder	# · ()
 ★ Favorites ■ Desktop ▶ Downloads ™ Recent Places ■ Libraries ■ Documents ● Music ■ Pictures ■ Videos ● Homegroup 	Libraries Homegroup Scott Computer Network Problem1_3a	
File name:	Problem1_16a	•
Save as type:	MATLAB files (*.m)	•
) Hide Folders	Save	Cancel

Notice that you can toggle back and forth between the two saved files by clicking on the names in the **Editor Window**. Try it! Press the **Run** button to execute the new **Script File**.

To learn how to use the atan (arc tangent) command, use the Search Documentation window:

Precedence	Operation		
First Second Third Fourth	Parentheses, evaluated starting with the innermost pair. Exponentiation, evaluated from left to right. Multiplication and division with equal precedence, evaluated from left to right. Addition and subtraction with equal precedence, evaluated from left to right.		
		Function	MATLAB syntax*
Using Order of Precedence principles, create a MATLAB script file to calculate Problem 1-15(a). 15. Use MATLAB to calculate $a. e^{(-2.1)^3} + 3.47 \log(14) + \sqrt[4]{287}$		e^{x} \sqrt{x} $\ln x$ $\log_{10} x$ $\cos x$ $\sin x$ $\tan x$ $\cos^{-1} x$ $\sin^{-1} x$	exp(x) sqrt(x) log(x) log10(x) cos(x) sin(x) tan(x) acos(x) asin(x)
		$\tan^{-1} x$	atan(x)

The **Order of Precedence** is a very important concept for properly performing calculations.

15. Use MATLAB to calculate *a.* $e^{(-2.1)^3} + 3.47 \log(14) + \sqrt[4]{287}$

Command Window

u = 8.0931 **15.** Use MATLAB to calculate *a.* $e^{(-2.1)^3} + 3.47 \log(14) + \sqrt[4]{287}$ *b.* $(3.4)^7 \log(14) + \sqrt[4]{287}$ *c.* $\cos^2\left(\frac{4.12\pi}{6}\right)$ *d.* $\cos\left(\frac{4.12\pi}{6}\right)^2$

Function	MATLAB syntax*
e^x	exp(x)
\sqrt{x}	sqrt (x)
$\ln x$	log(x)
$\log_{10} x$	log10(x)
$\cos x$	cos(x)
$\sin x$	sin(x)
tan x	tan(x)
$\cos^{-1} x$	acos (x)
$\sin^{-1} x$	asin(x)
$\tan^{-1} x$	atan(x)

MATLAB can perform calculations on **Arrays** with the same ease as it does with single numbers (**Scalars**). Create and run a new **Script File** for Problem 1.13:

2	Editor - C:\Users\scott\Desktop\Problem1_13.m					
34	m	× Problem1_16a.m × problem1_15a.m × Problem1_13.m ×				
1	—	clc				
2	—	clear				
3	—	<pre>disp('Problem 1.13 by Scott Thomas')</pre>				
4						
5	—	x(1) = 0;				
6	—	x(2) = 1;				
7	—	x(3) = 2;				
8	—	x(4) = 3;				
9	—	x(5) = 4;				
10	—	x(6) = 5;				
11						
12	—	x	-			
			-			

 (\mathbf{T})

Command Window

Problem 1.13 by Scott Thomas x = 0 1 2 3 4 5 The new variable **x** is an **Array** of six separate numbers that can be acted on as a single unit. The syntax for an **Array** is

```
Variable_name(Index_number) = Value
```

The **Index Number** shows where the particular **Value** resides within the **Array**. Index numbers are integers starting with 1.

Notice that the **Workspace Window** shows all of the **Values** of variable **x**:

Workspace	Workspace					
Name 🔺	Value	Min	Max			
Η x	[0,1,2,3,4,5]	0	5			

Calculate the new variable **y** (Array) using the following equation in terms of variable **x**:

 $y = 7\sin(4x)$

2	📝 Editor - C:\Users\scott\Desktop\Problem1_13.m* 💿 🗙						
3	m	×	Problem1_16a.m × problem1_15a.m × Problem1_13.m*	×Þ			
1	—		clc				
2	—		clear				
3	-		disp('Problem 1.13 by Scott Thomas')				
4							
5	—		x(1) = 0;				
6	—		x(2) = 1;				
7	—		x(3) = 2;				
8	—		x(4) = 3;				
9	—		x(5) = 4;				
10	—		x(6) = 5;				
11							
12	—		x				
13	—		y = 7*sin(4*x)				
14							

N	or	ks	pa	ce

Name 🔺	Value	Min	Max
i x	[0,1,2,3,4,5]	0	5
i y	[0,-5.2976,6.9255,-3.7560,-2.0153,6.3906]	-5.2976	6.9255

Plot the resulting **y Array** versus the **x Array** :

📝 Editor -	C:\Users\scott\Desktop\Problem1_13.m
Problem1	_3a.m × Problem1_16a.m × problem1_15a.m × Problem1_13.m ×
1 -	clc
2 -	clear
3 -	disp('Problem 1.13 by Scott Thomas')
4	
5 -	format short
6	
7 -	x(1) = 0;
8 -	x(2) = 1;
9 -	x(3) = 2;
10 -	x(4) = 3;
11 -	x(5) = 4;
12 -	x(6) = 5;
13	
14 —	x;
15 -	y = 7*sin(4*x);
16	
17 -	figure
18 -	<pre>plot(x,y,'ro'), xlabel('x'),ylabel('y')</pre>
19 -	title('Problem 1.13 by Scott Thomas')
20	

The Graphics Window appears, showing the graph of **y** versus **x**:

Create a new Array x2, use it to create a new Array y2, and plot y2 versus x2:

1	—	clc
2	—	clear
3	—	<pre>disp('Problem 1.13 by Scott Thomas')</pre>
4		
5	—	format short
6		
7	—	x(1) = 0;
8	—	x(2) = 1;
9	—	x(3) = 2;
10	—	x(4) = 3;
11	—	x(5) = 4;
12	—	x(6) = 5;
13		
14	—	x;
15	—	y = 7*sin(4*x);
16	—	$x^2 = 0:0.5:5;$
17	—	$y^2 = 7*sin(4*x^2);$
18	—	figure
19	—	<pre>plot(x,y,'ro',x2,y2), xlabel('x'),ylabel('y')</pre>
20	—	<pre>title('Problem 1.13 by Scott Thomas')</pre>

The **Array x2** is created using an automated system, with syntax as follows:

Variable_Name = Start : Step : Stop

where **Start** and **Stop** are the initial and final values (Range), and **Step** is the step size used to go between **Start** and **Stop**.

The Workspace Window now shows the new x2 and y2 variables as:

<1x11 double>

This means that they each have eleven numbers, arranged in one row and eleven columns:

Workspace				
Name 🔺	Value	Min	Max	
🖶 ans	[0,1,2,3,4,5]	0	5	
🛨 x	[0,1,2,3,4,5]	0	5	
🛨 x2	<1x11 double>	0	5	
🛨 y	[0,-5.2976,6.9255,-3.7560,-2.0153,6.3906]	-5.2976	6.9255	
Η у2	<1x11 double>	-5.2976	6.9343	

Refine the plot by making the value for **Step** much smaller:

2	Ed	itor - C:\Use	rs\scott\Desktop\Problem	1_13.m*		⊙×
) P	rol	blem1_3a.m	× Problem1_16a.m	× problem1_15a.m	× Problem1_13.m*	×
1	_	clc				
2	—	clear	r			
3	-	disp	('Problem 1.13 by	Scott Thomas')		
4						
5	—	forma	at short			
6						
7	—	x(1)	= 0;			
8	—	x (2)	= 1;			
9	—	x (3)	= 2;			
10	—	x(4)	= 3;			
11	—	x (5)	= 4;			
12	-	x(6)	= 5;			
13						
14	-	x;				
15	-	Υ = '	7*sin(4*x);			
16	-	x2 =	0:0.005:5;			
17	-	y2 =	7*sin(4*x2);			
18	—	figu	re			
19	_	plot	(x,y,'ro',x2,y2),	<pre>xlabel('x'),ylab</pre>	bel('∑')	
20	—	title	e('Problem 1.13 by	/ Scott Thomas')		
21						

Х

Notice that the number of values in **x2** and **y2** is now 1001.

Workspace					
Name 🔺	Value	Min	Max		
🕂 ans	[0,1,2,3,4,5]	0	5		
🛨 x	[0,1,2,3,4,5]	0	5		
🛨 x2	<1x1001 double>	0	5		
🖽 у	[0,-5.2976,6.9255,-3.7560,-2.0153,6.3906]	-5.2976	6.9255		
🛨 y2	<1x1001 double>	-7.0000	7.0000		

What happens when you try to plot **y2** versus **x**? Try it!

Command Window

```
Problem 1.13 by Scott Thomas
Error using plot
Vectors must be the same lengths.
```

```
Error in Problem1 13 (line 19)
```

plot(x, y2)

Workspace	Workspace						
Name 🔺	Value	Min	Max				
🕂 ans	[0,1,2,3,4,5]	0	5				
🛨 x	[0,1,2,3,4,5]	0	5				
🛨 x2	<1x1001 double>	0	5				
🔣 у	[0,-5.2976,6.9255,-3.7560,-2.0153,6.3906]	-5.2976	6.9255				
Η у2	<1x1001 double>	-7.0000	7.0000				

Use the **comment symbol (%)** to comment out the offensive command line. Go to the Publish

tab as shown: APPS SHORTCUTS EDITOR PUBLISH 'IEW Bulleted List Preformatted Text Bold \geq Hyperlink talic § ____ Numbered List E- Code Inline LaTeX Publish Display LaTeX Monospaced Image INSERT INLINE MARKUP INSERT BLOCK MARKUP Publish: Problem1_13 ers ▶ scott ▶ Documents ▶ MATLAB ▶ Edit Publishing Options... Editor - C:\Users\scott\Desktop\Problem1_13.m 2 WUTKS × Problem1_13.m <1_3a.m Problem1_16a.m × problem1_15a.m × Name clc 1 ans a clear 2 X 🕂 x2 disp('Problem 1.13 by Scott Thomas') 3 🖽 y 4 5 format short 6 7 x(1) = 0;x(2) = 1;9 x(3) = 2;x(4) = 3;10 11 x(5) = 4;12 x(6) = 5;13 14 x; 15 y = 7 * sin(4 * x);x2 = 0:0.005:5;16 $y^2 = 7*sin(4*x^2);$ 17 Comm figure 18 -19 % plot(x,y2) plot(x,y,'ro',x2,y2), xlabel('x'),ylabel('y') 20 -21 title('Problem 1.13 by Scott Thomas') 22

Change the **Output File Format** to **PDF**:

A Edit Configurations	a Chatradarian La		X
Problem1_13.m ×	Publish configuration name: Pro	blem1_13	
Problem1_13.m Problem1_13	MATLAB expression:		
	<pre>% Modify expression to</pre>	o add input arguments.	
	<pre>% Example:</pre>		
	<pre>% a = [1 2 3; 4 5 6]</pre>];	
	<pre>% foo(a);</pre>		
	Problem1_13		
	Publish settings: User Default	▼ Save As	
	Output settings		*
	Output file format	doc 🗸 🗸	
	Output folder	html	
	XSL file	xml	
	□ Figure settings	latex	
	Figure capture method	doc	Ξ
	Image Format	ppt	
	Use new figure	pdf	
	Max image width (pixels)	Inf	
	Max image height (pixels)	Inf	
	Create thumbnail	true	
	Code settings		
	Include code	true	-
+- 9	Select the output format for the	published document.	
		Close Publish Hel	p

Publish the file:

APPS		SHOR	TCUTS	EDITOR	PUBLISH	VIEW	/	
	spaced ERT IN	Σ	typerlink nline LaTeX	📄 Image	I List 🔄 Preform ed List 💽 Code 📡 Display ISERT BLOCK MARKUP		Publish: Pro	blem1_13
ers 🕨	scot	t 🕨 Do	cuments 🕨	MATLAB)	•			
2	Edito	r - C:\U	sers\scott\D	esktop\Prob	lem1_13.m		⊙×	Workspi
8∢	1_3a.i	m ×	Problem1	_16a.m ×	problem1_15a.m	× Problem1_13	3.m ×	Name 4
1	-	clc						ans
2	-	cle	ar					🗄 x
3	-	dis	p('Probl	em 1.13	by Scott Thom	as')		Η x2
4								🖿 у
5	-	for	mat shor	t				🛨 y2
6								
7	-	x (1) = 0;					
8) = 1;					
	-) = 2;					
10) = 3;					
	-	-) = 4;				E	
	-	X (6) = 5;					
13								
	_	x;	7toin (A	**** \ •				
	_	-	7*sin(4 0:0.00 =	-				
	_		= 0:0.00 = 7*sin(
18		fig		1 42),				Comma
19			lot(x,y2)				-u
	_	_		-), xlabel('x'),vlabel('v')		
	_	_			by Scott The			C
22			,		-		-	C P

The file gets saved to a folder on the Desktop:

clc
clear
disp('Problem 1.13 by Scott Thomas')

format short

x(1) = 0; x(2) = 1; x(3) = 2; x(4) = 3; x(5) = 4; x(6) = 5;

x; y = 7*sin(4*x); x2 = 0:0.005:5; y2 = 7*sin(4*x2); figure % plot(x,y2) plot(x,y,'ro',x2,y2), xlabel('x'),ylabel('y') title('Problem 1.13 by Scott Thomas')

Problem 1.13 by Scott Thomas

Use MATLAB to calculate

a.
$$\frac{3}{4}(6)(7^2) + \frac{4^5}{7^3 - 145}$$
 b. $\frac{48.2(55) - 9^3}{53 + 14^2}$
c. $\frac{27^2}{4} + \frac{319^{4/5}}{5} + 60(14)^{-3}$

The volume of a sphere is given by $V = 4\pi r^3/3$, where *r* is the radius. Use MATLAB to compute the radius of a sphere having a volume 40 percent greater than that of a sphere of radius 4 ft.

Use MATLAB to plot the function $T = 6 \ln t - 7e^{0.2t}$ over the interval $1 \le t \le 3$. Put a title on the plot and properly label the axes. The variable T represents temperature in degrees Celsius; the variable *t* represents time in minutes.

Use MATLAB to plot the functions $u = 2 \log_{10}(60x + 1)$ and $v = 3 \cos(6x)$ over the interval $0 \le x \le 2$. Properly label the plot and each curve. The variables *u* and *v* represent speed in miles per hour; the variable *x* represents distance in miles.

A *cycloid* is the curve described by a point P on the circumference of a circular wheel of radius r rolling along the x axis. The curve is described in parametric form by the equations

 $x = r (\phi - \sin \phi)$ $y = r (1 - \cos \phi)$

Use these equations to plot the cycloid for r = 10 in. and $0 \le \phi \le 4\pi$.

