Chapter 1: An Overview of MATLAB

MATLAB is:

A high-level language and interactive environment for numerical computation, visualization, and programming

MATLAB can:

Be used as a calculator, easily create scalars, vectors and arrays, be used as a programming environment, make sophisticated plots, be used to create models that describe experimental data, solve statistics and probability problems, solve systems of linear algebraic equations, solve differential equations

MATLAB is used for:

Finite element analysis, computational fluid dynamics, signal processing and communications, image and video processing, control systems, test and measurement, etc.

MATLAB is used by:
More than a million engineers and scientists in industry and academia

Chapter 1: An Overview of MATLAB

Chapter 1 Topics Covered:

- MATLAB Windows: Current Folder, Command, Workspace, Command History
- Using MATLAB as a Calculator
- Mathematical Operators
- Clearing Windows
- Assignment Operator
- Using MATLAB Script Files
- Creating/Saving/Editing/Executing Script Files
- Changing the Destination Folder
- Using the Editor Window
- Built-In Functions
- Search Documentation
- Order of Mathematical Precedence
- Creating Arrays and using them in Calculations
- Creating Plots with Arrays (Graphics Window)
- Creating Arrays Automatically
- Understanding Error Signals and Error Messages
- Publishing MATLAB Files

Using MATLAB as a Calculator

Open MATLAB.

Command Window
(i) New to MATLAB? Watch this Video, see Examples, or read Getting Started.
$f_{x} \gg \mid$

Workspace
Name A

Workspace
Window

Command History

Command
History
Window

Mathematical Operators

Symbol

Operation
MATLAB form

人	exponentiation: a^{b} $\mathrm{a}^{\wedge} \mathrm{b}$ * multiplication: $a b$ right division: $a / b=\frac{a}{b}$ $\mathrm{a} * \mathrm{~b}$ / a / b l left division: $a \backslash b=\frac{b}{a}$	$\mathrm{a} \backslash \mathrm{b}$
+	addition: $a+b$	$\mathrm{a}+\mathrm{b}$
-	subtraction: $a-b$	$\mathrm{a}-\mathrm{b}$

Type the following commands into the Command Window to solve Problem 1.1(a):

$$
\begin{aligned}
& >x=10 ; \\
& >y=3 ; \\
& \gg u=x+y
\end{aligned}
$$

1. Make sure you know how to start and quit a MATLAB session. Use MATLAB to make the following calculations, using the values $x=10$, $y=3$. Check the results by using a calculator.
a. $u=x+y$
b. $v=x y$
c. $w=x / y$
d. $z=\sin x$
e. $r=8 \sin y$
f. $s=5 \sin (2 y)$

The output of the calculation appears in the Command Window． The semi－colon（；）suppresses output to the Command Window．
The Workspace Window shows the names and values of the Variables．
The Command History Window shows the entered commands．
Previous commands can be accessed quickly by using the Up Arrow and Down Arrow．Try this！

Command
Window

Workspace

Name -	Value	Min	Max			
$⿴ \mathrm{u}$	13	13	13			
x	10	10	10			
$⿴ 囗 十 y$	3	3	3			

```
x=10;
    y=3;
    u = x + y
```

Command History
Window

Clear the Command Window by typing clc (and hit enter) into the Command Window.

Remove all of the variables from the Workspace by typing the command clear in the Command Window.

In the previous example, the equals sign (=) is called the Assignment or Replacement Operator. Type in the following session to demonstrate that the Assignment Operator is different than the equals sign in mathematics.

Command Window

New to MATLAB? Watch this Video, see Examples, or read Getting Started.

```
>> clear
>> \(x=5\)
```

$\mathrm{x}=$

5
>> $x=x+1$
$\mathrm{x}=$

6
>> $x=x^{\wedge} 2$
$\mathrm{x}=$

36
$f_{v} \gg$

The second command line that was typed in is shown in the Command History Window below. It states the following:
"Replace variable \mathbf{x} with the current contents of variable \mathbf{x} plus $1 . "$
In the third command line, the caret symbol (\wedge) denotes exponentiation.
"Replace variable \mathbf{x} with the current contents of variable \mathbf{x} raised to the second power."

Use MATLAB to solve Problem 1.3(a) as shown below:
3. Suppose that $x=3$ and $y=4$. Use MATLAB to compute the following, and check the results with a calculator.

$$
\text { a. }\left(1-\frac{1}{x^{5}}\right)^{-1} \quad \text { b. } 3 \pi x^{2} \quad \text { c. } \frac{3 y}{4 x-8} \quad \text { d. } \frac{4(y-5)}{3 x-6}
$$

Command Window
(1) New to MATLAB? Watch this Video,
$\gg \mathrm{x}=3$;
$\gg \mathrm{u}=\left(1-1 / \mathrm{x}^{\wedge} 5\right)^{\wedge}(-1)$
$\mathrm{u}=$
1.0041
$f_{x} \gg 1$

Using MATLAB Script Files

Another method of computation is to create a Script File, which is a way to store commands to be executed in the Command Window. Use the Home/New Script tab to create a new Script File:

A. MATLAB R2012b

The new window that has appeared is called the Editor/Debugger. Use the Editor in MATLAB to solve Problem 1.3(a) by typing the following.

3. Suppose that $x=3$ and $y=4$. Use MATLAB to compute the following, and check the results with a calculator.
a. $\left(1-\frac{1}{x^{5}}\right)^{-1}$
c. $\frac{3 y}{4 x-8}$
d. $\frac{4(y-5)}{3 x-6}$

Before saving，change the folder that MATLAB saves files to（the Destination Folder）by pushing the Browse for Folder button：

4 MATLAB R2012b

包
－C＊Users＊scott＊Documents＊MATLAB

Current Folder	
\square	Name－
四	fig10＿2＿5＿grtırtw
田	html
田 1	slprj
田 $]$	untitled＿grt＿rtw

Editor－Untitled＊

Untitled＊${ }^{*}$

$1 \quad \mathrm{x}=3$ ；
$u=\left(1-1 / x^{\wedge} 5\right)^{\wedge}(-1)$

Select the Desktop folder to be the Destination Folder.


```
Current Folder
(7) Editor - Untitled*
```

Name -
fig10_2_5_grt_rtw
html

+ \quad slprj
(1) untitled_grt_rtw

Save the file using the Save button. MATLAB Script File names must start with a letter, and the only special character allowed is the underscore. Numbers are allowed, as long as the number is not the first character. Spaces are not allowed.

The file appears in the Desktop folder as a *.m file. The Script File must be saved prior to execution. Press the green Run button to execute the Script file. Alternatively, pressing the Run button will automatically save the Script File.
4. MATLAB R2012b

Editor - Ci\Users\scott
Desktop\Problem1_3a.m
Problem1_3a.m x
$1-\quad x=3$;
$2-\quad u=\left(1-1 / x^{\wedge} 5\right)^{\wedge}(-1)$
3
4

The results of the calculation appear in the Command Window. Notice that the values shown in the Workspace Window have changed.

MATLAB will give you clues when you make a mistake in your equations. Delete the last parenthesis in the equation. Notice that the square becomes red, and a red line appears at the line that has the mistake. Also, a squiggly line appears where MATLAB thinks the error lies.

Editor - C \backslash Users $\backslash \mathrm{scott} \backslash$ Desktop... (\times

Hover the cursor over the red line: EOL stands for End Of Line.

Editor - ChUsershscotth Desktop...
Problem1_3a.m* m^{*}

1 - $\quad x=3$;
$u=\left(1-1 / x^{\wedge} 5\right)^{\wedge}(-1$

Workspace
Name = Value Min Max
(-) Line 2: Invalid syntax at $<\mathrm{EOL}>$. Possibly, a), $\}$, or] is missing. Δ Line 2: Terminate statement with semicolon to suppress outpu

Make the following change in the Script File and save the program using the Save Button under the Editor drop-down menu prior to running the program.

Problem1_3a.m x
$1-\quad \mathrm{x}=3 ;$
$2-\quad \mathrm{u}=\left(1-1 / \mathrm{x}^{\wedge} 5\right)^{\wedge}(-1)$
$3-\quad \mathrm{w}=3 * \mathrm{pi} * \mathrm{x}^{\wedge} 2$
4
5
6

Command Window
$\mathrm{u}=$

| Name - | Value | Min | Max |
| :--- | :--- | :--- | :--- | :--- |
| $\# \mathrm{u}$ | 1.0041 | 1.0041 | 1.0041 |
| $\square \mathrm{w}$ | 84.8230 | 84.8230 | 84.8230 |
| $\square \mathrm{x}$ | 3 | 3 | 3 |

Command History

```
x=10;
y=3;
u = X + Y
clc
clear
Problem1 3a
```

In the modified Script File, the built-in variable pi was used. Other built-in functions exist, as shown in the following session where Problem 1.16(a) is to be solved.

Function	MATLAB syntax ${ }^{\mathbf{1}}$
e^{x}	$\exp (\mathrm{x})$
\sqrt{x}	$\operatorname{sqrt}(\mathrm{x})$
$\ln x$	$\log (\mathrm{x})$
$\log _{10} x$	$\log 10(\mathrm{x})$
$\cos x$	$\cos (\mathrm{x})$
$\sin x$	$\sin (\mathrm{x})$
$\tan x$	$\tan (\mathrm{x})$
$\cos ^{-1} x$	$\operatorname{acos}(\mathrm{x})$
$\sin ^{-1} x$	$\operatorname{asin}(\mathrm{x})$
$\tan ^{-1} x$	$\operatorname{atan}(\mathrm{x})$

${ }^{1}$ The MATLAB trigonometric functions use radian measure.
16. Use MATLAB to calculate
a. $6 \pi \tan ^{-1}(12.5)+4 \quad$ b. $5 \tan \left[3 \sin ^{-1}(13 / 5)\right]$
c. $5 \ln (7)$
d. $5 \log (7)$

Check your answers with a calculator.
Create a new Script File using the New File Button on the Editor. MATLAB gives the new file the temporary name Untitled2.

Editor - C:\Users\scott\Desktop\Problem1_3a.m

Type in the following to calculate the equation given in Problem 1.16(a). Get in the habit of typing in the first two commands to clear the command window and to clear the variables stored in memory.

$$
6 \pi \tan ^{-1}(12.5)+4
$$

Save it to the Desktop using the Save As drop-down menu:

Notice that you can toggle back and forth between the two saved files by clicking on the names in the Editor Window. Try it! Press the Run button to execute the new Script File.

To learn how to use the atan (arc tangent) command, use the Search Documentation window:
존

FUNCIIONS

$f x$ atan
Inverse tangent; result in radians
atan2
Four-quadrant inverse tangent
atand
Inverse tangent; result in degrees
$f x$ atanh
Inverse hyperbolic tangent
$f x$ atan2d
Four-quadrant inverse tangent; result in degrees
$f x$ atan - Inverse tangent; result in radians
This MATLAB function returns the inverse tangent (arctangent) for each element of X .
MATLAB > Mathematics > Elementary Math > Trigonometry

The Order of Precedence is a very important concept for properly performing calculations.

Precedence

First

Second
Third

Fourth

Operation

Parentheses, evaluated starting with the innermost pair. Exponentiation, evaluated from left to right.
Multiplication and division with equal precedence, evaluated from left to right. Addition and subtraction with equal precedence, evaluated from left to right.

Function MATLAB syntax*

Using Order of Precedence principles, create a MATLAB script file to calculate Problem 1-15(a).
15. Use MATLAB to calculate

$$
\text { a. } e^{(-2.1)^{3}}+3.47 \log (14)+\sqrt[4]{287}
$$

15. Use MATLAB to calculate a. $e^{(-2.1)^{3}}+3.47 \log (14)+\sqrt[4]{287}$
problem1_15a.m x

$1-$	clc
$2-$	clear
3	
$4-$	$u=\exp ((-2.1) \sim 3)+3.47 * \log 10(14)+(287) \approx(1 / 4)$

5
Command Window

$$
\begin{aligned}
u= & \\
& 8.0931
\end{aligned}
$$

15. Use MATLAB to calculate
a. $e^{(-2.1)^{3}}+3.47 \log (14)+\sqrt[4]{287}$ b. $(3.4)^{7} \log (14)+\sqrt[4]{287}$
c. $\cos ^{2}\left(\frac{4.12 \pi}{6}\right)$ d. $\cos \left(\frac{4.12 \pi}{6}\right)^{2}$

Function MATLAB syntax*

e^{x}	$\exp (\mathrm{x})$
\sqrt{x}	$\operatorname{sqrt}(\mathrm{x})$
$\ln x$	$\log (\mathrm{x})$
$\log _{10} x$	$\log 10(\mathrm{x})$
$\cos x$	$\cos (\mathrm{x})$
$\sin x$	$\sin (\mathrm{x})$
$\tan x$	$\tan (\mathrm{x})$
$\cos ^{-1} x$	$\operatorname{acos}(\mathrm{x})$
$\sin ^{-1} x$	$\operatorname{asin}(\mathrm{x})$
$\tan ^{-1} x$	$\operatorname{atan}(\mathrm{x})$

MATLAB can perform calculations on Arrays with the same ease as it does with single numbers (Scalars). Create and run a new Script File for Problem 1.13:

The new variable \mathbf{x} is an Array of six separate numbers that can be acted on as a single unit. The syntax for an Array is
Variable_name(Index_number) = Value

The Index Number shows where the particular Value resides within the Array. Index numbers are integers starting with 1.

$$
\begin{aligned}
& x=0 \\
& \\
& \\
& \\
& \\
& \text { Index Number }=1 ;
\end{aligned}
$$

Notice that the Workspace Window shows all of the Values of variable \mathbf{x} :

Workspace			
Name -	Value	Min	Max
$⿴ \mathrm{x}$	$[0,1,2,3,4,5]$	0	5

Calculate the new variable \mathbf{y} (Array) using the following equation in terms of variable \mathbf{x} :

$$
y=7 \sin (4 x)
$$

Command Window
Problem 1.13 by Scott Thomas
$\mathrm{x}=$
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$
$\mathrm{y}=$

Columns 1 through 5

$$
\begin{array}{lllll}
0 & -5.2976 & 6.9255 & -3.7560 & -2.0153
\end{array}
$$

Column 6
6.3906
$f_{x} \gg$

Workspace			
Name -	Value	Min	Max
\#x	[0,1,2,3,4,5]	0	5
\#y	[$0,-5.2976,6.9255,-3.7560,-2.0153,6.3906]$	-5.2976	6.9255

Plot the resulting y Array versus the \mathbf{x} Array :

Editor - Ci\Users\scotthDesktop\Problem1_13.m

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Problem1_3a.m & x & Problem1_16a.m & \(\times\) & problem1_15a.m & x & Problem1_13.m & \(\times\) \\
\hline
\end{tabular}
    1- clc
    2- clear
    3- disp("Problem 1.13 by Scott Thomas")
    4
    5 - format short
    6
    7- x(1) = 0;
    8- x(2) = 1;
    9- x(3) = 2;
10- x(4) = 3;
11- }x(5)=4
12- x(6) = 5;
13
14- x;
15- y = 7*sin (4*x);
16
17 - figure
18- plot(x,y,"no"), xlabel("X"),ylabel("Y")
19 - title("Problem 1.13 by Scott Thomas")
20
    |
```

The Graphics Window appears, showing the graph of \mathbf{y} versus \mathbf{x} :
d Figure 1

```
LI回|x
```


Problem 1.13 by Scott Thomas

Create a new Array $\mathbf{~ \mathbf { 2 }}$, use it to create a new Array $\mathbf{y 2}$, and plot $\mathbf{y} \mathbf{2}$ versus $\mathbf{~ x 2}$:

```
1- clc
2 - clear
3- disp("Problem 1.13 by Scott Thomas")
4
5 - format short
6
7- x(1)=0;
8- x(2)=1:
9- x(3) = 2;
10- x(4) = 3;
11- }x(5)=4
12- x(6)=5;
13
14- x;
15- Y = 7* sin (4*x);
16- x2 = 0:0.5:5:
17- y2 = 7*sin (4*x2);
18- figure
19- plot (X,Y,"ro", X2,Y2), xlabel("X"),ylabel("Y")
20- title("Problem 1.13 by Scott Thomas")
```

The Array $\mathbf{x} \mathbf{2}$ is created using an automated system, with syntax as follows:
Variable_Name = Start : Step : Stop
where Start and Stop are the initial and final values (Range), and Step is the step size used to go between Start and Stop.

The Workspace Window now shows the new x 2 and y 2 variables as:

<1x11 double>

This means that they each have eleven numbers, arranged in one row and eleven columns:

Workspace			
Name -	Value	Min	Max
\sharp ans	$[0,1,2,3,4,5]$	0	5
$\square \mathrm{x}$	$[0,1,2,3,4,5]$	0	5
$\square \mathrm{x} 2$	$<1 \times 11$ double>	0	5
$\square \mathrm{y}$	$[0,-5,2976,6.9255,-3.7560,-2.0153,6,3906]$	-5.2976	6.9255
y 2	$<1 \times 11$ double>	-5.2976	6.9343

Problem 1.13 by Scott Thomas

Refine the plot by making the value for Step much smaller:

Editor - Ci\Users\scott\Desktop\Problem1_13.m*

Problem 1.13 by Scott Thomas

Notice that the number of values in $\mathbf{x} \mathbf{2}$ and $\mathbf{y} \mathbf{2}$ is now 1001.

Workspace

Name	Value	Min	Max
\# ans	[$0,1,2,3,4,5$]	0	5
\#x	[0,1,2,3,4,5]	0	5
\#x2	<1x1001 double>	0	5
\#y	[$0,-5.2976,6.9255,-3.7560,-2.0153,6.3906]$	-5.2976	6.9255
\#y2	<1x1001 double>	-7.0000	7.0000

What happens when you try to plot y2 versus \mathbf{x} ? Try it!

Editor - C:\Users\scott\Desktop\Problem1_13.m
Problem1_3a.m \times Problem1_16a.m \times problem1_15a.m \times Problem1_13.m \times

13

$$
14-\quad x ;
$$

$$
15-\quad y=7 * \sin (4 * x) ;
$$

$$
16-\quad x 2=0: 0.005: 5 ;
$$

$$
17-\quad y^{2}=7 * \sin (4 * x 2) ;
$$

$$
18 \text { - figure }
$$

$$
19-\quad \operatorname{plot}(x, y 2)
$$

20 \% plot(x,y,'ro',x2,y2), xlabel('x'),ylabel('y')
21 - title('Problem 1.13 by Scott Thomas')|

```
Command Window
Problem 1.13 by Scott Thomas
Error using plot
Vectors must be the same lengths.
Error in Problem1 13 (line 19)
plot(x,y2)
```

Workspace			
Name -	Value	Min	Max
\square ans	[0,1,2,3,4,5]	0	5
\#x	[0,1,2,3,4,5]	0	5
\#x2	<1x1001 double>	0	5
\#y	[0,-5.2976,6.9255,-3.7560,-2.0153,6.3906]	-5.2976	6.9255
\#y2	<1x1001 double>	-7.0000	7.0000

Use the comment symbol (\%) to comment out the offensive command line. Go to the Publish tab as shown:

Change the Output File Format to PDF:

Edit Configurations

Publish the file:

The file gets saved to a folder on the Desktop:


```
clc
clear
disp('Problem 1.13 by Scott Thomas')
```

format short

```
x(1) = 0;
x(2) = 1;
x(3) = 2;
x(4) = 3;
x(5) = 4;
x(6) = 5;
```

x;
$y=7 * \sin (4 * x)$;
$\mathrm{x} 2=0: 0.005: 5$;
y2 = 7*sin (4*x2);
figure
\% plot($x, y 2$)
plot (x,y,'ro',x2,y2), xlabel('x'),ylabel('y')
title('Problem 1.13 by Scott Thomas')

Problem 1.13 by Scott Thomas

Use MATLAB to calculate

$$
\begin{array}{ll}
\text { a. } \frac{3}{4}(6)\left(7^{2}\right)+\frac{4^{5}}{7^{3}-145} & \text { b. } \frac{48.2(55)-9^{3}}{53+14^{2}} \\
\text { c. } \frac{27^{2}}{4}+\frac{319^{4 / 5}}{5}+60(14)^{-3}
\end{array}
$$

The volume of a sphere is given by $V=4 \pi r^{3} / 3$, where r is the radius. Use MATLAB to compute the radius of a sphere having a volume 40 percent greater than that of a sphere of radius 4 ft .

Use MATLAB to plot the function $T=6 \ln t-7 e^{0.2 t}$ over the interval $1 \leq$ $t \leq 3$. Put a title on the plot and properly label the axes. The variable T represents temperature in degrees Celsius; the variable t represents time in minutes.

Use MATLAB to plot the functions $u=2 \log _{10}(60 x+1)$ and $v=3 \cos (6 x)$ over the interval $0 \leq x \leq 2$. Properly label the plot and each curve. The variables u and v represent speed in miles per hour; the variable x represents distance in miles.

A cycloid is the curve described by a point P on the circumference of a circular wheel of radius r rolling along the x axis. The curve is described in parametric form by the equations

$$
\begin{aligned}
& x=r(\phi-\sin \phi) \\
& y=r(1-\cos \phi)
\end{aligned}
$$

Use these equations to plot the cycloid for $r=10 \mathrm{in}$. and $0 \leq \phi \leq 4 \pi$.

