Chapter 2: Numeric, Cell, and Structure Arrays

 Topics Covered:- Vectors
- Definition
- Addition
- Multiplication
- Scalar, Dot, Cross
- Matrices
- Row, Column, Square
- Transpose
- Addition
- Multiplication
- Scalar-Matrix, Matrix-Matrix
- Element-by-Element Operations
- Multiplication, Division, Exponentiation, Vectorized Functions
- Array Addressing

Vectors

A Scalar is a number that has magnitude but no direction (Temperature reading on a thermometer, pressure reading on a pressure gage)

A Vector has both magnitude and direction. Vectors are used by engineers to represent position, velocity, acceleration, force, torque, angular velocity, angular acceleration, linear momentum, angular momentum, heat flux, magnetic flux, etc.

The Vector \vec{a} is composed of three Cartesian Components:

$$
\vec{a}=\left(a_{x}\right) \hat{\imath}+\left(a_{y}\right) \hat{\jmath}+\left(a_{z}\right) \hat{k}
$$

$\hat{\imath}, \hat{\jmath}$, and \hat{k} are Unit Vectors in the x, y, z directions.

The Length of the Vector \vec{a} is called its Magnitude:

$$
|\vec{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}
$$

Vectors are represented in MATLAB as:

$$
\vec{a}=\left[a_{x}, a_{y}, a_{z}\right] \text { or }\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z}
\end{array}\right]
$$

Open up a new MATLAB Script File:

Editor - Ci\Users\scott\Desktop\chapter2.m

```
chapter2.m x
1- clc
2- clear
3-a a [3, 7, 15]
4- Number_of_Elements = length(a)
5 - Magnitude_of_the_Vector = norm(a)
6- Add_the_Elements = sum(a)
7- Maximum_Element = max(a)
```

8
a $=$
$3 \quad 7$
1.5

Number_of_Elements = 3

Magnitude_of_the_Vector $=$ 16.8226

Add_the_Elements =

25

Maximum_Element =

Vector Addition: Add the corresponding Components of the two Vectors:

$$
\begin{gathered}
\vec{a}+\vec{b}=\left[a_{x}, a_{y}, a_{z}\right]+\left[b_{x}, b_{y}, b_{z}\right] \\
\vec{a}+\vec{b}=\left[\left(a_{x}+b_{x}\right),\left(a_{y}+b_{y}\right),\left(a_{z}+b_{z}\right)\right] \\
\vec{a}-\vec{b}=\left[\left(a_{x}-b_{x}\right),\left(a_{y}-b_{y}\right),\left(a_{z}-b_{z}\right)\right]
\end{gathered}
$$

Modify and run the Script File as follows:

chapter 2.m

Command Window

$$
a=
$$

$$
3
$$

$$
b=
$$

$$
\begin{array}{lll}
1 & 5 & -9
\end{array}
$$

$$
\mathrm{x}=
$$

$$
4
$$

$$
12
$$

$$
\mathrm{y}=
$$

Vector Multiplication

Scalar \times Vector: Distribute the Scalar to each Component of the Vector:

$$
c \vec{a}=\left[c a_{x}, c a_{y}, c a_{z}\right]
$$

Command Window

Modify and run the Script File as follows:

Editor-CilUsers\scott\Desktop\cha... © \times

$a=$
$\mathrm{c}=$

2
$\mathrm{f}=$
$6 \quad 14$

Vector Dot Product

Vector • Vector: Sum of the products of the corresponding Components of the two Vectors.

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=|\vec{a}| \times|\vec{b}| \times \cos \theta=\text { Scalar } \\
& \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
\end{aligned}
$$

Modify and run the Script File as follows:

Editor - Ci\Users\scott\Desktop\cha...
 ($) \times$

chapter2.m \times

Command Window

Vector Cross Product

Vector \times Vector: Results in a Vector Normal (Perpendicular) to the plane defined by the two vectors being crossed.

$$
\vec{a} \times \vec{b}=(|\vec{a}||\vec{b}| \sin \theta) \hat{n}=\text { Vector }
$$

\hat{n} is the Unit Vector Normal to the Plane.

$$
\begin{gathered}
\vec{a} \times \vec{b}=-(\vec{b} \times \vec{a})=\left[\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right] \quad \begin{array}{c}
\text { Determinant } \\
\text { Method }
\end{array} \\
\vec{a} \times \vec{b}=\left(a_{y} b_{z}-a_{z} b_{y}\right) \hat{\imath}-\left(a_{x} b_{z}-a_{z} b_{x}\right) \hat{\jmath}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \hat{k}
\end{gathered}
$$

Modify and run the Script File as follows:

Editor-Ci\Users\scott\Desktop\cha... $0 \times$

$\underline{\text { Matrices }}$

A Matrix is a rectangular Array of numbers arranged in Rows and Columns. The individual numbers in a Matrix are called Elements.

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right] \\
\\
\text { Column 1 }
\end{gathered}
$$

$A_{\text {Row-Column }}: A_{23}=$ Number in the Second Row, Third Column
In MATLAB, use a Comma to separate Columns; use a Semi-Colon to separate Rows:

$$
\mathbf{A}=\left[A_{11}, A_{12}, A_{13} ; A_{21}, A_{22}, A_{23} ; A_{31}, A_{32}, A_{33}\right]
$$

Modify and run the Script File as follows:

Editor - Ci\Users\scotthDesktophchapter2.m*

chapter2.m* x

$1-$	clc
$2-$	clear
$3-$	$a=[3,7,15] ;$
$4-$	$b=[1,5,-9] ;$
$5-$	$x=a+b ;$
$6-$	$y=a-b ;$
$7-$	$c=2 ;$
$8-$	$f=c * a ;$
$9-$	$g=\operatorname{dot}(a, b) ;$
$10-$	$h=\operatorname{cross}(a, b) ;$
$11-$	$m=\operatorname{cross}(b, a) ;$

12
$13-\quad A=[1,2,3 ; 4,5,6 ; 7,8,9]$
14

Row Vector: A Matrix with one Row, multiple Columns

$$
\mathbf{B}=\left[B_{11}, B_{12}, B_{13}\right]
$$

Column Vector: A Matrix with one Column, multiple Rows

$$
\mathbf{C}=\left[\begin{array}{l}
C_{11} \\
C_{21} \\
C_{31}
\end{array}\right]
$$

In MATLAB, create a Column Vector by using Semi-Colons to separate Rows

$$
\mathbf{C}=\left[C_{11} ; C_{12} ; C_{13}\right]
$$

Square Matrix: Number of Rows $=$ Number of Columns

$$
\mathbf{D}=\left[\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right]
$$

A Vector can be Transposed by switching the Rows and Columns.

$$
\mathbf{A}=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right] \quad \mathbf{A}^{\mathbf{T}}=\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right]
$$

Command Window

$$
\mathrm{A}=
$$

Modify and run the Script File as follows:

Editor - C
Users\scott\Desktophchapter2.m

$10-\quad h=\operatorname{cross}(a, b)$:
$11-\quad \mathrm{m}=\operatorname{cross}(\mathrm{b}, \mathrm{a})$:
$13-\quad A=[1,2,3: 4,5,6 ; 7,8,9]$
$14-\quad E=A^{\prime}$
$\mathrm{E}=$

1	4	7
2	5	8
3	6	9

Matrix Addition: The Size of the two Matrices must be the same: $(2 \times 2)+(2 \times 2)=(2 \times 2) \quad$ (Two Rows \times Two Columns)

$$
\begin{aligned}
& \mathbf{D}+\mathbf{F}=\left[\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right]+\left[\begin{array}{ll}
F_{11} & F_{12} \\
F_{21} & F_{22}
\end{array}\right] \\
& \mathbf{D}+\mathbf{F}=\left[\begin{array}{ll}
\left(D_{11}+F_{11}\right) & \left(D_{12}+F_{12}\right) \\
\left(D_{21}+F_{21}\right) & \left(D_{22}+F_{22}\right)
\end{array}\right]
\end{aligned}
$$

Command Window

$$
\begin{aligned}
& \mathrm{D}= \\
& \\
& \\
& \\
& 1
\end{aligned}
$$

Modify and run the Script File as follows:

Editor - CiUsershscott\Desktophchapter2.m

chapter2.m x

$13-\quad \mathrm{A}=[1,2,3 ; 4,5,6 ; 7,8,9] ;$
$14-\quad \mathrm{E}=\mathrm{A}^{\prime} ;$
15
$16-\quad \mathrm{D}=[12 ; 31]$
$17-\mathrm{F}=[56 ; 7 \mathrm{~B}]$
$18-\quad \mathrm{G}=\mathrm{D}+\mathrm{F}$

Elements of the Matrix:

$$
\mathrm{c} \mathbf{A}=\left[\begin{array}{lll}
c A_{11} & c A_{12} & c A_{13} \\
c A_{21} & c A_{22} & c A_{23} \\
c A_{31} & c A_{32} & c A_{33}
\end{array}\right]
$$

Modify and run the Script File as follows:

Editor - CiUsers\scott\Desktophchapter2.m

$\mathrm{c}=$

3
$\mathrm{H}=$

3	6	9
12	15	18
21	24	27

Matrix \times Matrix Multiplication: The Size of the two Matrices Can Be the Same: $(2 \times 2) \times(2 \times 2)=(2 \times 2)$

$$
\begin{gathered}
\mathbf{D} \times \mathbf{F}=\left[\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right] \times\left[\begin{array}{ll}
F_{11} & F_{12} \\
F_{21} & F_{22}
\end{array}\right] \\
\mathbf{D} \times \mathbf{F}=\left[\begin{array}{ll}
\left(D_{11} F_{11}+D_{12} F_{21}\right) & \left(D_{11} F_{12}+D_{12} F_{22}\right) \\
\left(D_{21} F_{11}+D_{22} F_{21}\right) & \left(D_{21} F_{12}+D_{22} F_{22}\right)
\end{array}\right]
\end{gathered}
$$

Modify and run the Script File as follows:

Editor - Ci\Users\scott\Desktop

$\left.\left.\begin{array}{ll}16- & \mathrm{D}=[12 ; 3\end{array}\right] \begin{array}{ll}17- & \mathrm{F}=[56 ; 7\end{array}\right]$

Command Window

$$
\mathrm{D}=
$$

1	2	$J=$	
		19	22
		43	50

5	6
7	8

Matrix \times Matrix Multiplication: The Sizes of the two Matrices Can Be Different: The Inner Sizes Must be the Same; the Outer Sizes Can be Different.

$$
\begin{gathered}
\mathbf{K} \times \mathbf{L}=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22} \\
K_{31} & K_{32}
\end{array}\right] \times\left[\begin{array}{lll}
L_{11} & L_{12} & L_{13} \\
L_{21} & L_{22} & L_{23}
\end{array}\right] \\
=\left[\begin{array}{lll}
\left(K_{11} L_{11}+K_{12} L_{21}\right) & \left(K_{11} L_{12}+K_{12} L_{22}\right) & \left(K_{11} L_{13}+K_{12} L_{23}\right) \\
\left(K_{21} L_{11}+K_{22} L_{21}\right) & \left(K_{21} L_{12}+K_{22} L_{22}\right) & \left(K_{21} L_{13}+K_{22} L_{23}\right) \\
\left(K_{31} L_{11}+K_{32} L_{21}\right) & \left(K_{31} L_{12}+K_{32} L_{22}\right) & \left(K_{31} L_{13}+K_{32} L_{23}\right)
\end{array}\right]
\end{gathered}
$$

Modify and run the Script File as follows:

E Editor - Ci\Users\scott\Desktoplchapter2.r

What Happens when you Reverse the Order of Multiplication? Try it!

Command Window

$\mathbb{K}=$		
	1	2
	3	4
5	6	

7	8	9
10	11	12

$\mathrm{M}=$

27	30	33
61	68	75
95	106	117

$$
\begin{gathered}
(2 \times 3) \times(3 \times 2)=(2 \times 2) \\
\mathbf{L} \times \mathbf{K}=\left[\begin{array}{lll}
L_{11} & L_{12} & L_{13} \\
L_{21} & L_{22} & L_{23}
\end{array}\right] \times\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22} \\
K_{31} & K_{32}
\end{array}\right] \\
=\left[\begin{array}{ll}
\left(L_{11} K_{11}+L_{12} K_{21}+L_{13} K_{31}\right) & \left(L_{11} K_{12}+L_{12} K_{22}+L_{13} K_{32}\right) \\
\left(L_{21} K_{11}+L_{22} K_{21}+L_{23} K_{31}\right) & \left(L_{21} K_{12}+L_{22} K_{22}+L_{23} K_{32}\right)
\end{array}\right]
\end{gathered}
$$

In General,

Another method to calculate the Dot Product of two vectors is to use Matrix Multiplication:

$$
\begin{gathered}
\mathbf{B}=\left[B_{11}, B_{12}, B_{13}\right] \\
\mathbf{C}=\left[C_{11}, C_{12}, C_{13}\right] \\
\mathbf{B} \cdot \mathbf{C}=\left[\begin{array}{lll}
B_{11} & B_{12} & B_{13}
\end{array}\right] *\left[\begin{array}{l}
C_{11} \\
C_{21} \\
C_{31}
\end{array}\right]
\end{gathered}
$$

Verify this using MATLAB!

Let:

$$
\begin{aligned}
& \mathbf{B}=[1,2,3] \\
& \mathbf{C}=[4,5,6]
\end{aligned}
$$

$\underline{\text { Element } \times \text { Element Multiplication: }}$

Element-by-Element Multiplication is often used in engineering calculations. It is defined only for arrays that have the same size.
$\mathbf{D} . \times \mathbf{F}=\left[\begin{array}{ll}D_{11} & D_{12} \\ D_{21} & D_{22}\end{array}\right] \cdot *\left[\begin{array}{ll}F_{11} & F_{12} \\ F_{21} & F_{22}\end{array}\right]$
$\mathbf{D} . \times \mathbf{F}=\left[\begin{array}{ll}\left(D_{11} F_{11}\right) & \left(D_{12} F_{12}\right) \\ \left(D_{21} F_{21}\right) & \left(D_{22} F_{22}\right)\end{array}\right]$
Editor - Ci\Usershscott\Desktoplc
chapter2.m
$\begin{array}{ll}37- & D=\left[\begin{array}{llll}1 & 2 ; & 3 & 4\end{array}\right] \\ 38- & F=\left[\begin{array}{llll}5 & 6 ; & 7 & 8\end{array}\right]\end{array}$
39
$40-\quad N=D . * F$
41

$$
\begin{aligned}
& 61 \\
& 68 \\
& 95106 \\
& \text { D }= \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& \text { F = } \\
& 5
\end{aligned}
$$

Element \times Element Division:

Element-by-Element Division is also defined only for arrays that have the same size.

Command Window

$\mathrm{D}=$
$\mathbf{D} . / \mathbf{F}=\left[\begin{array}{ll}D_{11} & D_{12} \\ D_{21} & D_{22}\end{array}\right] \cdot /\left[\begin{array}{ll}F_{11} & F_{12} \\ F_{21} & F_{22}\end{array}\right]$

1	2
3	4

D. $/ \mathbf{F}=\left[\begin{array}{ll}\left(D_{11} / F_{11}\right) & \left(D_{12} / F_{12}\right) \\ \left(D_{21} / F_{21}\right) & \left(D_{22} / F_{22}\right)\end{array}\right]$

Editor - Ci\Users\scotthDesktoplc

chapter $2 . \mathrm{m}$ x

$37-$	$\mathrm{D}=\left[\begin{array}{llll}1 & 2: & 3 & 4\end{array}\right]$
$38-$	$\mathrm{F}=\left[\begin{array}{lll}5 & 6: & 7\end{array}\right]$
$39-$	$\mathrm{N}=\mathrm{D} \cdot * \mathrm{~F} ;$
40	
$41-$	$\mathrm{P}=\mathrm{D} . / \mathrm{F}$

Element \times Element Exponentiation:

Element-by-Element Exponentiation is also defined only for arrays that have the same size.

Command Window

$$
\begin{aligned}
& \text { D. } \wedge \mathbf{F}=\left[\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right] \cdot \wedge\left[\begin{array}{ll}
F_{11} & F_{12} \\
F_{21} & F_{22}
\end{array}\right] \\
& \text { D. } \wedge \mathbf{F}=\left[\begin{array}{ll}
\left(D_{11} \wedge F_{11}\right) & \left(D_{12} \wedge F_{12}\right) \\
\left(D_{21} \wedge F_{21}\right) & \left(D_{22} \wedge F_{22}\right)
\end{array}\right]
\end{aligned}
$$

$$
\mathrm{D}=
$$

$$
F=
$$

Editor - Ci\Usershscott Desktop

chapter2.m
$\left.\begin{array}{ll}37- & \mathrm{D}=\left[\begin{array}{llll}1 & 2: & 3 & 4\end{array}\right. \\ 38- & \mathrm{F}=[56 ; 7\end{array}\right]$

Vectorized Functions:

When you use functions like $\sin (x), \operatorname{atan}(x)$ and $\exp (x)$ on vectors, the results of the functions become vectors also. These are called Vectorized Functions. When multiplying or dividing these functions, you must use Element-by-Element Operations.

Editor - Ci\Users\scott\Desktophchapter2.m

chapter2.m

41
$42-\quad \mathrm{x}=0: 0.1: 10$;
$43-\quad \mathrm{y}=\mathrm{x}^{\wedge} 2$;
44
Command Window

```
Error using A
Inputs must be a scalar and a square matrix.
To compute elementwise FOWER, use FOWER (.^)
instead.
Error in chapter2 (line 43)
y = x^2;
```


Vectorized Functions:

Vectorized Functions:

```
E Editor - CWUsershscott\Desktophchapter2.m
    chapter2.m
    41
    \(42-\quad x=0: 0.1: 10 ;\)
    \(43-\quad y=x .{ }^{2} 2\);
    \(44-\quad z=\sin (x) * \cos (y)\)
    45 - plot ( \(x, z\) )
Command Window
```

```
Error using *
```

Error using *
Inner matrix dimensions must agree.
Inner matrix dimensions must agree.
Error in chapter2 (1ine 44)
Error in chapter2 (1ine 44)
z = sin(x)*\operatorname{cos(y)}

```
z = sin(x)*\operatorname{cos(y)}
```


Vectorized Functions:

Editor - Ci\Users\scott\Desktop\chapter2

chapter2.m x

$$
\begin{array}{ll}
42- & x=0: 0.1: 10 ; \\
43- & y=x \cdot \wedge \\
44-\quad & z=\sin (x) \cdot * \cos (y): \\
45-\quad & \text { plot }(x, z)
\end{array}
$$

Vectorized Functions:

E Editor - Ci\Users\scott\Desktophchapter2.	(7) \times
"chapter2.m x	
```x = 0:0.1:10; y = x.^2; z = sin( (x^2).* cos( (y^3) plot( }\textrm{x},\textrm{z}\mathrm{ )```	$\pm \square$
Command Window	)
Error using $\qquad$   Inputs must be a scalar and a square matrix. To compute elementwise POWER, use POWER (. ${ }^{\text {a }}$ ) instead.	

## Vectorized Functions



## Array Addressing

Now that you know how to create arrays, you need to be able to use specific elements, or rows, or columns in calculations. This is called Array Addressing. The Colon operator allows us to select individual

```
 M =
```

$27 \quad 30$
$61 \quad 68$
$95 \quad 106$
75
117
$\mathrm{a}=$

75

## E Editor-CiUsers\scotthDesktop\chapter2.m

chapter2.m elements, rows, columns, or parts of arrays.

$23-$	$\mathrm{K}=[12 ; 34 ; 56] ;$
$24-$	$\mathrm{L}=[7 \mathrm{~B} 9 ; 10$
$25-$	$\mathrm{M}=\mathrm{K} * \mathrm{~L}$
26	$12] ;$
$27-$	$\mathrm{a}=\mathrm{M}(2,3)$
$28-$	$\mathrm{b}=\mathrm{M}(: 3)$
$29-$	$\mathrm{c}=\mathrm{M}(3,:)$
$30-$	$\mathrm{d}=\mathrm{M}(2: 3,1: 2)$


$23-$	$\mathrm{K}=[12 ; 34 ; 56] ;$
$24-$	$\mathrm{L}=[7 \mathrm{~B} 9 ; 10$
$25-$	$\mathrm{M}=\mathrm{K} * \mathrm{~L}$
26	$12] ;$
$27-$	$\mathrm{a}=\mathrm{M}(2,3)$
$28-$	$\mathrm{b}=\mathrm{M}(: 3)$
$29-$	$\mathrm{c}=\mathrm{M}(3,:)$
$30-$	$\mathrm{d}=\mathrm{M}(2: 3,1: 2)$

26

$23-$	$\mathrm{K}=[12 ; 34 ; 56] ;$
$24-$	$\mathrm{L}=[7 \mathrm{~B} 9 ; 10$
$25-$	$\mathrm{M}=\mathrm{K} * \mathrm{~L}$
26	$12] ;$
$27-$	$\mathrm{a}=\mathrm{M}(2,3)$
$28-$	$\mathrm{b}=\mathrm{M}(: 3)$
$29-$	$\mathrm{c}=\mathrm{M}(3,:)$
$30-$	$\mathrm{d}=\mathrm{M}(2: 3,1: 2)$

$\mathrm{b}=$

33
75
117
$\mathrm{c}=$

95
106
117
$\mathrm{d}=$
$61 \quad 68$
$95 \quad 106$

## Problem 2.1:

a. Use two methods to create the vector $x$ having 100 regularly spaced values starting at 5 and ending at 28.
b. Use two methods to create the vector $x$ having a regular spacing of 0.2 starting at 2 and ending at 14.

Start by looking at a simpler scenario, where three regularly spaced values are desired $(n=3)$ :


$$
\Delta x=\frac{(28-5)}{(3-1)}=11.5
$$

$$
5+11.5=16.5
$$

$$
16.5+11.5=28
$$

In General,

$$
\Delta x=\frac{\left(x_{\max }-x_{\min }\right)}{(n-1)}
$$

```
xmin =
 5
xmax =
 28
N =
 3
deltax =
 11.5000
x =
```

    Editor - Ci\Users\scott\Desktop\Problem2_1.m
    chapter2.m
        Problem2_1.m x
    1 - clc
    2 - clear
    \(3-\quad\) xmin \(=5\)
    \(4-\quad x \max =28\)
    \(5-\quad N=3\)
    6 - deltax \(=(x \max -x m i n) /(N-1)\)
    \(7-\quad x=5: d e l t a x: 28\)
    \(8-\quad \mathrm{x} 2=\operatorname{linspace}(5,28, N)\)
    ```
xmin =
```

xmin =
5
5
xmax =
xmax =
28
28
N}
N}
3
3
deltax =
deltax =
11.5000
11.5000
x =
x =
5.0000
5.0000
16.5000
16.5000
x2 =
x2 =

## Problem 2.1:

a. Use two methods to create the vector $x$ having 100 regularly spaced values starting at 5 and ending at 28 .
b. Use two methods to create the vector $x$ having a regular spacing of 0.2 starting at 2 and ending at 14 .
6. Type this matrix in MATLAB and use MATLAB to carry out the following instructions.

$$
\mathbf{A}=\left[\begin{array}{rrrr}
3 & 7 & -4 & 12 \\
-5 & 9 & 10 & 2 \\
6 & 13 & 8 & 11 \\
15 & 5 & 4 & 1
\end{array}\right]
$$

a. Create a $4 \times 3$ array B consisting of all elements in the second through fourth columns of $\mathbf{A}$.
b. Create a $3 \times 4$ array $\mathbf{C}$ consisting of all elements in the second through fourth rows of $\mathbf{A}$.
c. Create a $2 \times 3$ array $\mathbf{D}$ consisting of all elements in the first two rows and the last three columns of $\mathbf{A}$.

## 8. Given the matrix

$$
\mathbf{A}=\left[\begin{array}{rrrr}
3 & 7 & -4 & 12 \\
-5 & 9 & 10 & 2 \\
6 & 13 & 8 & 11 \\
15 & 5 & 4 & 1
\end{array}\right]
$$

a. Find the maximum and minimum values in each column. $b$. Find the maximum and minimum values in each row.
13.* Given the matrices

$$
\mathbf{A}=\left[\begin{array}{rr}
56 & 32 \\
24 & -16
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{rr}
14 & -4 \\
6 & -2
\end{array}\right]
$$

Use MATLAB to
$a$. Find the result of $\mathbf{A}$ times $\mathbf{B}$ using the array product. $b$. Find the result of $\mathbf{A}$ divided by $\mathbf{B}$ using array right division.
c. Find $\mathbf{B}$ raised to the third power element by element.
34. The volume of a parallelepiped can be computed from $|\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})|$, where $\mathbf{A}, \mathbf{B}$, and $\mathbf{C}$ define three sides of the parallelepiped (see Figure P34). Compute the volume of a parallelepiped defined by $\mathbf{A}=5 \mathbf{i}$, $\mathbf{B}=2 \mathbf{i}+4 \mathbf{j}$, and $\mathbf{C}=3 \mathbf{i}-2 \mathbf{k}$.


Figure P34

