Chapter 4: Programming with MATLAB

Topics Covered:

- Programming Overview
- Relational Operators and Logical Variables
- Logical Operators and Functions
- Conditional Statements
- For Loops
- While Loops
- Debugging MATLAB programs

Programming Overview:

MATLAB programming can be used to solve very computationally intensive problems which may require thousands or hundreds of thousands of calculations. Operations can be:

- Sequential: Calculations are executed in order from the top down.
- Conditional: Calculations are made based on the answer (either true or false) to a question.
- Iterative: Calculations are made over and over until a condition is met.

Relational Operators and Logical Variables:

Relational Operators make comparisons between numbers or arrays.

The result of a comparison is either:

- = 0 (if the comparison is false) or
- = 1 (if the comparison is *true*)

The result can be used as a variable. When used to compare arrays, the relational operators compare the arrays on an element-by-element basis. The arrays must have the same dimension. When comparing an array to a scalar, all of the elements of the array are compared to the scalar.

Table 4.2–1 Relational operators

Relational operator	Meaning
<	Less than.
<=	Less than or equal to.
>	Greater than.
>=	Greater than or equal to.
==	Equal to.
~=	Not equal to.

Problem 4.4:

Suppose that x = 6. Find the results of the following operations by hand and use MATLAB to check your results.

a.
$$z = (x < 10)$$

b. $z = (x == 10)$
c. $z = (x >= 4)$
d. $z = (x \sim= 7)$

Command Window

```
Problem 4.4: Scott Thomas
Part a: 6<10 (less than?)
z =
```

1

```
Part b: 6==10 (equal to?)
z =
```

0

1

z =

z =

```
Part d: 6~=7 (not equal to?)
```

Problem 4.6:

Command Window

Suppose that x = [10, -2, 6, 5, -3] and y = [9, -3, 2, 5, -1]. Find the results of the following operations by hand and use MATLAB to check your results.

$$a. z = (x < 6)$$
 $c. z = (x == y)$ $b. z = (x <= y)$ $d. z = (x \sim= y)$

Part b: $z = (x \le y)$

Problem 4.8:

The array price given below contains the price in dollars of a certain stock over 10 days. Use MATLAB to determine how many days the price was above \$20.

```
price = [19, 18, 22, 21, 25, 19, 17, 21, 27, 29]
                                Problem 4.8: Scott Thomas
                                price =
                                   19
                                      18
                                          22
                                              21
                                                  25
                                                      19
                                                          17
                                                                 27
                                z =
Use the find and
                                 1×10 logical array
length commands
                                     0 1 1 1 0 0 1 1 1
                                zz =
What values are over
                                             8
                                                      10
20? Use MATLAB to
find them.
                                number of days =
```

6

values_above_20 =

22 21 25 21 27 29

Logical Operators and Functions:

MATLAB has five Logical Operators (or Boolean Operators).

 Table 4.3–1
 Logical operators

Operator	Name	Definition
~	NOT	~A returns an array of the same dimension as A; the new array has 1s where A is 0 and 0s where A is nonzero.
&	AND	A & B returns an array of the same dimension as A and B; the new array has 1s where both A and B have nonzero elements and 0s where either A or B is 0.
I	OR	A \mid B returns an array of the same dimension as A and B; the new array has 1s where at least one element in A or B is nonzero and 0s where A and B are both 0.
&&	Short-Circuit AND	Operator for scalar logical expressions. A && B returns true if both A and B evaluate to true, and false if they do not.
ŢŢ	Short-Circuit OR	Operator for scalar logical expressions. $A \mid \mid B$ returns true if either A or B or both evaluate to true, and false if they do not.

The height and speed of a projectile (such as a thrown ball) launched with a speed of v_0 at an angle A to the horizontal are given by

$$h(t) = v_0 t \sin A - 0.5 gt^2$$

$$v(t) = \sqrt{v_0^2 - 2v_0 gt \sin A + g^2 t^2}$$

where g is the acceleration due to gravity. The projectile will strike the ground when h(t) = 0, which gives the time to hit $t_{hit} = 2(v_0/g) \sin A$.

Suppose that $A = 30^{\circ}$, $v_0 = 40$ m/s, and g = 9.81m/s². Use the MATLAB relational and logical operators to find the times when

- a. The height is no less than 15 m.
- b. The height is no less than 15 m and the speed is simultaneously no greater than 36 m/s.

Step 1: Create plots of the height and speed versus time.

Command Window

Problem 4.12: Scott Thomas

A_deg =

30

A_rad =

0.5236

 $\nabla_0 =$

40

 $\alpha =$

9.8100

tmax =

4.0775

Step 2: Use the MATLAB relational and logical operators to find the times when the height is no less than 15 m.

```
time_above_15   t(height>=15)
t_initial_a   time_above_15(1)
t_final_a   time_above_15(length(time_above_15))
```

```
t_initial_a = 1.0297

t_final_a = 3.0478
```

Step 3: Use the MATLAB relational and logical operators to find the times when the height is no less than 15 m and the speed is simultaneously no greater than 36 m/s.

```
time above 15 under 36 = t(height>=15&speed<=36);
t initial b = time above 15 under 36(1)
t final b = time above 15 under 36(length(time above 15 under 36))
                         t initial b =
                              1.0709
                         t final b =
                              3.0066
```

If Statements:

The Conditional Operators (If Statements) use Relational Operators:

- < Less than
- <= Less than or equal to
- > Greater than
- >= Greater than or equal to
- == Equal to
- ~= Not equal to

The result of these **Relational Operators** is either **True** or **False** (1 or 0). This can be used to control the flow of a program. This is called **Logic Flow**, which can be represented by a **Flowchart**.

If Statements:

Create the following MATLAB program. Once you've checked that it is working correctly, switch the values of **x** and **y**.

Nested If Statements:

Create the following MATLAB program. In order to compute the value of **z**, both **Logical Expressions** must return a **True** value. Once you've checked that it is working correctly, change the values of *x* and *y* to zero.

If-Else Statements:

If-Else Statements provide two options based on the result of the **Logical Expression**.

Create the following MATLAB program. Once you've checked that it is working correctly, change the value of **x** to 50.

If-Elseif-Else Statements:

This is the **General Form** of the **if** statement. Create the following MATLAB program. Once you've checked that it is working correctly, change the value of **x** to 5 and then to 7.

Write a script file using **Conditional If-Elseif-Else** statements to evaluate the following function, assuming that x = -2, 0, and 6. The function is:

$$y = \begin{cases} e^{x+1} & \text{for } x < -1\\ 2 + \cos(\pi x) & \text{for } -1 \le x \le 5\\ 10(x-5) + 1 & \text{for } x > 5 \end{cases}$$

Command Window

 Problem 4.16: Scott Thomas
 x =
 x =
 x =
 x =
 6

 x =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 y =
 <td

0.3679

For Loop:

The **For Loop** is a structure that repeats a set of commands or calculations a specified number of times. Create the following MATLAB program. In this case, the variable **x** is a scalar.

For Loop:

The **For Loop** can be used to **Load** a **Vector** with values. The

Counter k is used to Index through the vector elements.

What happens if you don't
 Initialize x? [Comment out x(1)]

How many elements does x

- = 3 and rerun]
- have?What change would you make if
- you wanted **x** to have only 3 elements?

Click on the **Horizontal Lines** to the right of the line numbers. This creates **Breakpoints** on the lines of code.

When you hit **Run**, the **Editor Bar** changes to the following:

The Editor Window and the Command Window change as well. The Green Arrow indicates the line that is going to be executed next:

Click on the **Continue** button to step through the program. The values of the variables appear in the **Command Window**.

Notice how the vector **x** is loaded as you step through the **for** loop.

You can stop execution and **Debugging** by clicking on the red **Quit Debugging** button.

0.2500

dx =

fx K>>

Click on the **Breakpoints/Clear All** tab to delete all of the breakpoints.

Use a for loop to determine the sum of the first 10 terms in the series $5k^3$, k = 1, 2, 3, ..., 10.

```
Problem 4.22: Scott Thomas

The sum is:

ysum =

15125
```

a. An *ideal* diode blocks the flow of current in the direction opposite that of the diode's arrow symbol. It can be used to make a *half-wave rectifier* as shown in Figure P27a. For the ideal diode, the voltage v_L across the load R_L is given by

$$v_L = \begin{cases} v_S & \text{if } v_S > 0 \\ 0 & \text{if } v_S \le 0 \end{cases}$$

Suppose the supply voltage is

$$v_{\rm S}(t) = 3e^{-t/3}\sin(\pi t) \qquad {\rm V}$$

where time t is in seconds. Write a MATLAB program to plot the voltage v_L versus t for $0 \le t \le 10$.

Step 1: Create a vector for Time t, use it to calculate the Supply Voltage v_s, and plot v_s versus t.

<u>Step 2:</u> Create an **if** statement that can calculate the **Load Voltage** for a given **Supply Voltage**. Test the **if** statement at the following time values:

$$t = 0.5000$$
 1.5000
 $v_L = \begin{cases} v_S & \text{if } v_S > 0 \\ 0 & \text{if } v_S \leq 0 \end{cases}$ $v_S = v_S = 0$ $v_S(t) = 3e^{-t/3}\sin(\pi t)$ $v_S = 0$ $v_S = 0$

Step 3: Use a for loop with an if statement to load the Load Voltage vector v_l. Plot both the supply voltage v_s and the load voltage v_l versus t.

While Loops:

The **While Loop** is a structure that repeats a set of commands or calculations until the **Logical Expression** condition is met. The number of iterations through the loop is unknown prior to starting the program. Create the following MATLAB program. Use the **Debugging Tool** to step through the program. In this case, the variable **x** is a scalar.

While Loops:

Change the **While Loop** as shown below. Use the **Debugging Tool** to step through the program. In this case, the variable **x** is a **Vector**. Notice how the **Counter k** is used to **Load** the **x Vector**.

Use a while loop to determine how many terms in the series 2^k , k = 1, $2, 3, \ldots$, are required for the sum of the terms to exceed 2000. What is the sum for this number of terms?

```
Command Window
  Problem 4.32: Scott Thomas
  k =
      10
  sumk =
           2046
```

Example Problem:

Write a While Loop to plot the following function over the range $-2 \le x \le 6$.

$$y = \begin{cases} e^{x+1} & \text{for } x < -1\\ 2 + \cos(\pi x) & \text{for } -1 \le x \le 5\\ 10(x-5) + 1 & \text{for } x > 5 \end{cases}$$

