Chapter 5: Advanced Plotting

Problem 5.31: Scott Thomas

Problem 5.34: Scott Thomas

$x y$ Plotting
PLOT TITLE
Height of a Falling Object Versus Time

Present Data Compactly

Logarithmic Plotting

\log-log Plots are used for Plotting Sudden Changes in Values: $\log \log (\mathrm{x}, \mathrm{y})$

Rectangular xy Plot: $\operatorname{plot}(\mathrm{x}, \mathrm{y}) \quad \log -\log$ Plot: $\log \log (\mathrm{x}, \mathrm{y})$

Logarithmic Plotting

Semi-log Plots: Only One Axis is Logarithmic: $\operatorname{semilog} x(x, y)$ or semilogy (x, y)

Semi-log Plot: $\operatorname{semilogy}(x, y)$

$\log -\log$ Plot: $\log \log (\mathrm{x}, \mathrm{y})$

Other Plots

Stem Plots, Bar Plots, Stair Plots:

Three-Dimensional Plots

$x y z$ Plots:

Three-Dimensional Plots

Surface Mesh Plots:

Three-Dimensional Plots

Contour Plots:

Problem 5.3:

a. Estimate the roots of the equation

$$
x^{3}-3 x^{2}+5 x \sin \left(\frac{\pi x}{4}-\frac{5 \pi}{4}\right)+3=0
$$

by plotting the equation.
b. Use the estimates found in part a to find the roots more accurately with the fzero function.

Problem 5.3:

$$
x^{3}-3 x^{2}+5 x \sin \left(\frac{\pi x}{4}-\frac{5 \pi}{4}\right)+3=0
$$

Create a Function

 File to plot the function:Zeros are near:

$$
\begin{gathered}
x_{1} \cong-0.5 \\
x_{2} \cong 1.2 \\
x_{3} \cong 3.8
\end{gathered}
$$

Problem 5.3 by Scott Thomas

Problem 5.3:

fzero

Find root of continuous function of one variable. $x=$ fzero(fun, $x 0)$ tries to find a zero of fun near $x 0$, if $x 0$ is a scalar. fun is a function handle. The value x returned by fzero is near a point where fun changes sign.

Command Window
$\mathrm{x}=$
1.1346
$\mathrm{x} 3=$
3.8000
$x=$

Problem 5.15:

The following functions describe the oscillations in electric circuits and the vibrations of machines and structures. Plot these functions on the same plot. Make sure to provide a plot title, x and y axis labels, and a legend that describes the two graphs.

$$
\begin{aligned}
& x(t)=10 e^{-0.5 t} \sin (3 t+2) \\
& y(t)=7 e^{-0.4 t} \cos (5 t-3)
\end{aligned}
$$

Problem 5.18:

The perfect gas law relates the pressure p, absolute temperature T, mass m, and volume V of a gas. It states that

$$
p V=m R T
$$

The constant R is the gas constant. The value of R for air is 286.7 $(\mathrm{N} \cdot \mathrm{m}) /(\mathrm{kg} \cdot \mathrm{K})$. Suppose air is contained in a chamber at room temperature $\left(20^{\circ} \mathrm{C}=293 \mathrm{~K}\right)$. Create a plot having three curves of the gas pressure in $\mathrm{N} / \mathrm{m}^{2}$ versus the container volume V in m^{3} for $20 \leq V \leq 100$. The three curves correspond to the following masses of air in the container: $m=1 \mathrm{~kg}$, $m=3 \mathrm{~kg}$, and $m=7 \mathrm{~kg}$.

Problem 5.18:

Problem 5.21:

The following table shows the average temperature for each year in a certain city. Plot the data as a stem plot, a bar plot, and a stairs plot using subplots. Use the following command to force the tick mark labels to be whole numbers:
set(gca,'XTick',2000:1:2004)

Year	2000	2001	2002	2003	2004
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	21	18	19	20	17

text(x, y, 'Stem Plot')

$\operatorname{subplot}(2,1,1), \operatorname{plot}(x)$
subplot($2,1,2$), plot(y)
plots x on the top half of the window and y on the bottom half.

Problem 5.21:

Problem 5.21: Scott Thomas

Problem 5.26:

Applying a sinusoidal voltage $v_{i}=A_{i} \sin (\omega t)$ to the RC (ResistorCapacitor) circuit shown results in an output voltage $v_{o}=$
$A_{o} \sin (\omega t+\phi)$ that is also sinusoidal with the same frequency but with a different amplitude and shifted in time relative to the input voltage. The frequency response plot is a plot of A_{o} / A_{i} versus frequency ω. This ratio depends on ω and $R C$ as follows:

$$
\frac{A_{o}}{A_{i}}=\left|\frac{1}{R C s+1}\right|
$$

where $s=\omega i$. For $R C=0.1 \mathrm{~s}$, obtain the log-log plot of $\left|A_{o} / A_{i}\right|$ versus
ω and use it to find the range of frequencies for which the output amplitude A_{o} is less than 70 percent of the input amplitude A_{i}.

Problem 5.26:

logspace

Generate logarithmically spaced vectors

Syntax

$$
\begin{aligned}
& y=\operatorname{logspace}(a, b) \\
& y=\operatorname{logspace}(a, b, n) \\
& y=\operatorname{logspace}(a, p i)
\end{aligned}
$$

Description

The logspace function generates logarithmically spaced vectors. Especially useful for creating frequency vectors, it is a logarithmic equivalent of linspace and the ":" or colon operator.
$y=\operatorname{logspace}(a, b)$ generates a row vector y of 50 logarithmically spaced points between decades $10^{\wedge} \mathrm{a}$ and $10^{\wedge} \mathrm{b}$.
$y=\log \operatorname{space}(a, b, n)$ generates n points between decades $10^{\wedge} a$ and $10^{\wedge} b$.
omega $=\operatorname{logspace}(0,2, \mathrm{~N}) ;$
$\operatorname{set}($ gca, 'YTick', linspace($0.1,1,10))$

Problem 5.26:

omega $=\operatorname{logspace}(0,2, \mathrm{~N})$; use find command to locate ω

Problem 5.28:

The popular amusement ride known as the corkscrew has a helical shape. The parametric equations for a circular helix are

$$
\begin{aligned}
& x=a \cos t \\
& y=a \sin t \\
& z=b t
\end{aligned}
$$

where a is the radius of the helical path and b is a constant that determines the "tightness" of the path. In addition, if $b>0$, the helix has the shape of a right-handed screw; if $b<0$, the helix is left-handed.

Obtain the three-dimensional plot of the helix for the following three cases and compare their appearance with one another. Use $0 \leq t \leq 10 \pi$ and $a=1$.
a. $b=0.1$
b. $b=0.2$
c. $b=-0.1$

Problem 5.28:

$\operatorname{plot} 3(\mathrm{x}, \mathrm{y}, \mathrm{z} 1, \mathrm{x}, \mathrm{y}, \mathrm{z} 2, \mathrm{x}, \mathrm{y}, \mathrm{z} 3)$

Problem 5.30:

Obtain the surface and contour plots for the function $z=x^{2}-2 x y+4 y^{2}$, showing the minimum at $x=y=0$.

Problem 5.30:

