Chapter 6: Model Building and
Regression

Engineers take experimentally determined data and attempt
to fit curves to it for analysis.

* Linear: y(x) = mx + b (m =slope, b = y-intercept)

« Power: y(x) = bx™

« Exponential: y(x) = b(10)™* or y(x) = be™* where
e is the base of the natural logarithm (Ine = 1)

Regression uses the Least-Squares Method to find an
equation that best fits the given data.
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Power Function: y(x) = bx™
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Function Discovery

Linear Functions: Linear on rectilinear plot (X,y)
Power-Law Functions: Linear on log-log plot (log10 x, log10

y)
Exponential Functions: Linear on semi-log y plot (X, log10 y)

Once the function type Is determined, use the polyfit function
to determine the curve fit equation.

For an original data set (x,y), the polyfit function returns
coefficients for the linear curve fit model w = p,z + p,

p = polyfit(x,y, 1)

where p; = p(1) and p, = p(2)



Function Discovery

Linear Functions:

y(x) = mx + b (m =slope, b = y-intercept)
p = polyfit(x,y, 1)

w(z) =p(1)z+ p(2)

Power-Law Functions: y(x) = bx™

p = polyftit(logl0(x), logl0(y),1)
W(Z) — 1019(2)219(1)

Exponential Functions: y(x) = b(10)™*

p = polyfit(x, logl10(y),1)
w(z) = 102 (10)P(D)2



Function Discovery
Open a new MATLAB Script file. Type in the following data:

t 00 05 10 15 20 25 3.0 35 40 45 5.0
w  6.00 4.83 3.70 3.15 2.41 1.83 1.49 1.21 0.96 0.73 0.64

Plot the data using rectilinear coordinates, as shown below.

t =0:0.5:5.0;
w=1[64.833.73.152.411.831.491.21 0.96 0.73 0.64];

% Linear Fit
figure
plot( t, w,'-0'), xlabel('t'),ylabel('w (Rectilinear Plot)')



Function Discovery

This plot shows that the data Is not a Linear Function.
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Function Discovery

Now plot the data using log-log coordinates, as shown below.

% Power-Law Fit
figure
loglog( t, w,'-0'), xlabel('t"),ylabel('w (Log-Log Plot)')



Function Discovery

This plot shows that the data is not a Power-Law Function
because it Is not linear on log-log coordinates.
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Function Discovery

Now plot the data using semi-log y coordinates, as shown
below.

% Exponential Fit
figure
semilogy( t, w,'-0'), xlabel('t'),ylabel('w (Semi-Log Plot)’)



Function Discovery

This plot shows that the data is an Exponential Function
because it Is linear on semi-log y coordinates.
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Function Discovery

Now use the polyfit command to construct an Exponential
Function that can be used to approximate the original data.
Plot the original data and the curve-fit model on the same
graph. Use this model to estimate the value of w at t = 0.25:

% Exponential Fit

p = polyfit(t, log1l0(w),1); % generates coefficients for curve fit

t2 = linspace(0,5,100); % generates a new t vector for curve fit
w2 =107(p(2))*10.Mp(1)*t2); % generates new w vector using t2
% Estimate w at t = 0.25:

t 025=0.25;
w_025=10"(p(2))*10.~p(1)*t_025)
figure

plot(t,w,'0',t2,w2,t_025,w _025), xlabel('t'),ylabel('w (Exponential Fit)')
legend('Original Data', 'Curve Fit', w@ t=2.55s")



Function Discovery
w_025 = 5.3410
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Regression

The Least-Squares Method minimizes the vertical differences
(Residuals) between the data points and the predictive
equation. This gives the line that best fits the data. For a linear
curve (First Order) fit:

n

] = Z(mxi +b — )

i=1
where the equation of a straight line Is

y(x) =mx+b



Regression

® Data Point

Imx, + b = 5l

(X1,¥1)

(X2,¥5)
. ®

[ /
Imx; + b=yl

y=mx+b

®
(X3,Y3)

|mx3+ b— yal




Regression

The curve fit can be improved by increasing the order of the
polynomial. Increasing the degree of the polynomial increases
the number of coefficients:

* First Degree: y(x) = ax + aq

 Second Degree: y(x) = a,x? + a;x + q,

 Third Degree: y(x) = azx> + ayx* + a;x + a,

« Fourth Degree: y(x) = a,x* + azx> + a,x* + a;x + a,
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Regression

Having a very high-order polynomial doesn’t necessarily mean
a better fit. The objective is to be able to use the equation to
predict values between the data points.
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Basic Fitting Interface

Use the previously developed Script File to use the Basic
Fitting Interface.

File Edit Wiew Inset Tools Desktop Window Help o
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Basic Fitting Interface

Use the Tools Drop-Down Menu and go to Basic Fitting.

File Edit View Insert | Tools | Desktop Window Help k.

e de | | % Edit Plot B imi
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Basic Fitting Interface

Use the Tools Drop-Down Menu and go to Basic Fitting.

4\ Basic Fitting - 1 = | B & | Figure 1 E=aRcy )
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Basic Fitting Interface

Check the boxes indicated below. Change the number of
Significant Digits to 5.
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Basic Fitting Interface

The Residuals Plot i1s shown below. The norm of the residuals

1s a measure of the “Goodness of Fit.” A smaller value 1s
preferable.

B Figure 2 | B
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Problem 6.1:

The distance a spring stretches from its “free length” is a function of how
much tension force is applied to it. The following table gives the spring
length y that the given applied force f produced in a particular spring. The

spring’s free length is 4.7 in. Find a functional relation between f and x,
the extension from the free length (x = y — 4.7).

Force f (lb)' Spring length y (in.)
0 4.7
0.94 7.2
2.30 10.6

3.28 12.9




Problem 6.1:
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Problem 6.5:

Quenching is the process of immersing a hot metal object in a bath for a
specified time to obtain certain properties such as hardness. A copper sphere
25 mm 1n diameter, initially at 300°C, is immersed in a bath at 0°C. The fol-
lowing table gives measurements of the sphere’s temperature versus time.

Find a functional description of these data. Plot the function and the data on
the same plot.

Time (s) 0 1 2 3 4 3
Temperature (°C) | 300 150 73 35 12 5




Problem 6.5:
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Problem 6.10:

The following data give the stopping distance d as a function of the
Initial speed v, for a certain car model. Using the polyfit command, find
a third-order polynomial that fits the data. Show the original data and the
curve fit on a plot. Using the curve fit, estimate the stopping distance for
an initial speed of 63 mi/hr.

v (mi/hr) 20 30 40 50 60 70
d (ft) 45 80 130 185 250 330




Problem 6.10:
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Problem 6.13:

Data on the vapor pressure P of water as a function of temperature T are
given in the following table. From theory we know that In P is
proportional to 1/T. Obtain a curve fit for P(T) from these data using the
polyfit command. Use the fit to estimate the vapor pressure at T = 285 K.

T (K) P (torr)
273 4.579
278 6.543
283 9.209
288 12.788
293 17.535

298 23.756
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Problem 6.13:
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Problem 6.13:
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