Chapter 8: Linear Algebraic Equations

- Matrix Methods for Linear Equations
- Uniqueness and Existence of Solutions
- Under-Determined Systems
- Over-Determined Systems

Linear Algebraic Equations

For 2 Equations and 2 Unknowns, the solution is the intersection of the two lines. For 3 Equations and 3 Unknowns, the solution is the intersection of three planes.

The simplest system of linear equations is:

ax + by = cdx + ey = f

Two equations and two unknowns (all coefficients are known). Can be solved by substitution, row reduction, Kramer's Rule. Cast the system in Vector Form:

$$\begin{bmatrix} a & b \\ d & e \end{bmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} c \\ f \end{pmatrix}$$

Matrix*Column Vector = Column Vector

 $A \cdot z = B$

 $A \cdot z = B$

Solve for solution vector z by multiplying both sides by A^{-1} (A Inverse [Matrix]):

$$A^{-1} \cdot (A \cdot z) = A^{-1} \cdot (B)$$

LHS:
$$A^{-1} \cdot (A \cdot z) = (A^{-1} \cdot A) \cdot z = I \cdot z = z$$

 $A^{-1} \cdot A = I$ (Identity Matrix): $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$z = A^{-1} \cdot B$$

where

$$A^{-1} = \begin{pmatrix} 1 \\ \overline{ae - bd} \end{pmatrix} \cdot \begin{bmatrix} e & -b \\ -d & a \end{bmatrix}$$

 A^{-1} Exists if the Determinant of Matrix A is both Square and Nonsingular:

$$|A| = \det(A) = ae - bd \neq 0$$

For a given linear system of equations, there may be:

- One Unique Solution
- An Infinite Number of Solutions
- No Solution

Use the Rank of Matrix *A* and the Rank of the Augmented Matrix [*A B*] to Establish the Uniqueness and Existence of the Solution.

 $Rank_A = rank(A)$ $Rank_AB = rank([A B])$

Uniqueness and Existence of the Solution

If Rank_A \neq Rank_AB, a Unique Solution Does Not Exist

If Rank_A = Rank_AB = Number of Unknowns, a Unique Solution Exists

If Rank_A = Rank_AB but Rank_A \neq Number of Unknowns, an Infinite Number of Solutions Exist \uparrow

Uniqueness and Existence of the Solution

% One Unique Solution: % x-y = -1, 3x+y = 9A = [1 -1; 3 1]B = [-1; 9]AB = [A B]rank A = rank(A)rank AB = rank(AB) Det A = det(A)Inv A = inv(A)z = Inv A*B

MATLAB has Several Methods of Solving Systems of Linear Equations:

- Matrix Inverse: z = inv(A) *B (Calculates the Inverse of A.)
- Left Division: z = A\B (Uses Gauss Elimination to Solve for z for Over-Determined Systems.)
- Pseudo-Inverse: z = pinv(A)*B (Used When There are More Unknowns than Equations: Under-Determined Systems. This Method Provides One Solution, but Not All Solutions.)
- Row-Reduced Echelon Form: rref([A B]) (Also Used for Under-Determined Systems. This Method Provides a Set of Equations That Can be Used to Find All Solutions.)

Under-Determined Systems Not Enough Information to Determine all of the Unknowns (Infinite Number of Solutions)

Case 1: Fewer Equations than Unknowns:

$$x + 3y - 5z = 7$$
$$-8x - 10y + 4z = 28$$

Case 2: Two Equations are Not Independent:

$$x + 3y - 5z = 7$$

-8x - 10y + 4z = 28
-16x - 20y + 8z = 56
(Equation 3) = 2*(Equation 2)

(Equation 3) = 2^* (Equation 2)

Solve Under-Determined Systems using Pseudo-Inverse pinv, which finds one solution by minimizing the Euclidean Norm, or find all possible solutions by using the rref method (Row-Reduced Echelon Form).

Under-Determined Systems

- % Under-Determined System:
- % Inverse Method
- % x+3y-5z = 7, -8x-10y+4z = 28

$$A = [1 \ 3 \ -5; \ -8 \ -10 \ 4]$$

- B = [7; 28]
- AB = [A B]
- $rank_A = rank(A)$
- rank_AB = rank(AB)
- $Det_A = det(A)$
- $Inv_A = inv(A)$
- z = Inv_A*B

Under-Determined Systems

- % Under-Determined System:
- % Pseudo-Inverse Method
- % x+3y-5z = 7, -8x-10y+4z = 28

$$A = [1 \ 3 \ -5; \ -8 \ -10 \ 4]$$

- B = [7; 28]
- AB = [A B]
- $rank_A = rank(A)$
- rank_AB = rank(AB)
- z = pinv(A) *B

Row-Reduced Echelon Form x + 3y - 5z = 7-8x - 10y + 4z = 28Replace (Equation 2) by 8*(Equation 1) + (Equation 2): x + 3y - 5z = 70x + 14y - 36z = 84Divide (Equation 2) by 14: x + 3y - 5z = 7 $0x + y - \frac{36}{14}z = 6$ Replace (Equation 1) by -3*(Equation 2) + (Equation 1): x + 0y + 2.714z = -11 $0x + y - \frac{36}{14}z = 6$ Infinite Number of Solutions because *z* can be any number:

$$x + 2.714z = -11$$
$$y - \frac{36}{14}z = 6$$

Under-Determined Systems

% Under-Determined System: % Row-Reduced Echelon Method % x+3y-5z = 7, -8x-10y+4z = 28 A = [1 3 -5; -8 -10 4] B = [7; 28] AB = [A B] rank_A = rank(A) rank_AB = rank(AB) z = rref([A,B])

Over-Determined Systems

Over-Determined Systems

Over-Determined Systems

2.* *a.* Solve the following matrix equation for the matrix C.

A(BC + A) = B

b. Evaluate the solution obtained in part a for the case

$$A = \begin{bmatrix} 7 & 9 \\ -2 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix} \qquad A = \begin{bmatrix} 7 & 9 \\ -2 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 7 & 9 \\ -2 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 7 & 9 \\ -2 & 4 \end{bmatrix}$$

$$B = \begin{bmatrix} 7 & 9 \\ -2 & 4 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -3 \\ 7 &$$

1.5357 1.3372

The circuit shown in Figure P4 has five resistances and one applied voltage. Kirchhoff's voltage law applied to each loop in the circuit shown gives

$$v - R_2 i_2 - R_4 i_4 = 0$$

-R_2 i_2 + R_1 i_1 + R_3 i_3 = 0
-R_4 i_4 - R_3 i_3 + R_5 i_5 = 0

Conservation of charge applied at each node in the circuit gives

$$i_{6} = i_{1} + i_{2}$$

 $i_{2} + i_{3} = i_{4}$
 $i_{1} = i_{3} + i_{5}$
 $i_{4} + i_{5} = i_{6}$

- a) Write a MATLAB script file that uses given values of the applied voltage v and the values of the five resistances and solves for the six currents.
- b) Use the program developed in part *a*) to find the currents for the case where $R_1 = 1 \text{ k}\Omega$, $R_2 = 5 \text{ k}\Omega$, $R_3 = 2 \text{ k}\Omega$, $R_4 = 10 \text{ k}\Omega$, $R_5 = 5 \text{ k}\Omega$, and v = 100 V (1 k $\Omega = 1000 \Omega$).

 $v - R_2 i_2 - R_4 i_4 = 0$ $-R_1i_1 - R_3i_3 + R_2i_2 = 0$ $-R_5i_5 + R_4i_4 + R_3i_3 = 0$ $i_1 = i_3 + i_5$ $i_2 + i_3 = i_4$ $i_4 + i_5 = i_6$ $i_6 = i_1 + i_2$

Unknowns: $i_1, i_2, i_3, i_4, i_5, i_6$

 $(0)i_1 + (-R_2)i_2 + (0)i_3 + (-R_4)i_4 + (0)i_5 + (0)i_6 = (-\nu)$ $(-R_1)i_1 + (R_2)i_2 + (-R_3)i_3 + (0)i_4 + (0)i_5 + (0)i_6 = (0)$ $(0)i_1 + (0)i_2 + (R_3)i_3 + (R_4)i_4 + (-R_5)i_5 + (0)i_6 = (0)$ $(1)i_1 + (0)i_2 + (-1)i_3 + (0)i_4 + (-1)i_5 + (0)i_6 = (0)$ $(0)i_1 + (1)i_2 + (1)i_3 + (-1)i_4 + (0)i_5 + (0)i_6 = (0)$ $(0)i_1 + (0)i_2 + (0)i_3 + (1)i_4 + (1)i_5 + (-1)i_6 = (0)$ $(-1)i_1 + (-1)i_2 + (0)i_3 + (0)i_4 + (0)i_5 + (1)i_6 = (0)$

Unknowns: $i_1, i_2, i_3, i_4, i_5, i_6$

A =

	0	-5000	0	-10000	0	0
	-1000	5000	-2000	0	0	0
	0	0	2000	10000	-5000	0
	1	0	-1	0	-1	0
	0	1	1	-1	0	0
	0	0	0	1	1	-1
	-1	-1	0	0	0	1
b =		X =				
-100		0.0189				
0		0.0049				
0		0.0027				
0		0.0076				
0		0.0070				
0		0.0162				
0		0.0238				

Problem 8.11:

11.* Solve the following equations:

$$7x + 9y - 9z = 22$$
$$3x + 2y - 4z = 12$$
$$x + 5y - z = -2$$

.

Problem 8.11:

Problem 8.11: Scott Thomas A = $\begin{array}{cccccccccccccccccccccccccccccccccccc$	Command Window								
$A = \begin{bmatrix} 1.0000 & 0 & -1.3846 & 4.9231 \\ 0 & 1.0000 & 0.0769 & -1.3846 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $x^{2} = \begin{bmatrix} 1.6437 \\ -1.2024 \\ -2.3684 \end{bmatrix}$ The resulting equations are: $(1)x + (0)y - 1.3846z = 4.9231 \\ (0)x + (1)y + 0.0769z = -1.3846 \end{bmatrix}$ These equations can be solved in terms of z: $x = 1.3846z + 4.9231 \\ y = -0.0769z - 1.3846 \end{bmatrix}$	Problem 8.11: Scott Thoma	3	x1 =						
$A = \begin{bmatrix} 0 & 1.0000 & 0.0769 & -1.3846 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $x^{2} = \begin{bmatrix} 1.6437 \\ -1.2024 \\ -2.3684 \end{bmatrix}$ $RankA = \begin{bmatrix} (1)x + (0)y - 1.3846z = 4.9231 \\ (0)x + (1)y + 0.0769z = -1.3846 \end{bmatrix}$ These equations can be solved in terms of z: $x = 1.3846z + 4.9231 \\ y = -0.0769z - 1.3846 \end{bmatrix}$			1.0000	0	-1.3846	4.9231			
$\begin{bmatrix} 7 & 9 & -9 \\ 3 & 2 & -4 \\ 1 & 5 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ x^2 = \\ 1.6437 \\ -1.2024 \\ -2.3684 \end{bmatrix}$ $\begin{bmatrix} 22 \\ 12 \\ -2 \\ -2 \\ -2 \end{bmatrix}$ The resulting equations are: $(1)x + (0)y - 1.3846z = 4.9231 \\ (0)x + (1)y + 0.0769z = -1.3846 \end{bmatrix}$ $\begin{bmatrix} 1 \\ x + (1)y + 0.0769z = -1.3846 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -$	A =		0	1.0000	0.0769	-1.3846			
$x^{2} = \frac{1.6437}{-1.2024}$ $x^{2} = \frac{1.6437}{-1.2024}$ $x^{2} = \frac{1.6437}{-2}$ The resulting equations are: (1)x + (0)y - 1.3846z = 4.9231 $(0)x + (1)y + 0.0769z = -1.3846$ These equations can be solved in terms of z: x = 1.3846z + 4.9231 $y = -0.0769z - 1.3846$	7 9 -9		0	0	0	0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 2 -4								
b = $\begin{array}{c} 1.6437 \\ -1.2024 \\ -2.3684 \end{array}$ RankA = 2 The resulting equations are: (1)x + (0)y - 1.3846z = 4.9231 \\ (0)x + (1)y + 0.0769z = -1.3846 \end{array} These equations can be solved in terms of z: x = 1.3846z + 4.9231 y = -0.0769z - 1.3846	1 5 -1		x2 =						
b = 22 12 -2 RankA = 2 RankA = 2 RankAb = 2 2 RankAb = 2 2 2 2 2 2 2 2 2 2 2 2 2			1 6437						
$= \frac{22}{-2}$ The resulting equations are: (1)x + (0)y - 1.3846z = 4.9231 $(0)x + (1)y + 0.0769z = -1.3846$ These equations can be solved in terms of z: x = 1.3846z + 4.9231 $y = -0.0769z - 1.3846$	b =		-1.2024						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-2.3684						
The resulting equations are: (1) $x + (0)y - 1.3846z = 4.9231$ (1) $x + (1)y + 0.0769z = -1.3846$ These equations can be solved in terms of z: x = 1.3846z + 4.9231 y = -0.0769z - 1.3846	12								
The resulting equations are: (1) $x + (0)y - 1.3846z = 4.9231$ (0) $x + (1)y + 0.0769z = -1.3846$ These equations can be solved in terms of z: x = 1.3846z + 4.9231 y = -0.0769z - 1.3846	-2								
RankA = (1) $x + (0)y - 1.3846z = 4.9231$ (0) $x + (1)y + 0.0769z = -1.3846$ These equations can be solved in terms of z: x = 1.3846z + 4.9231 y = -0.0769z - 1.3846		The resulting	ng equations	are:					
RankA = (0) $x + (1)y + 0.0769z = -1.3846$ (0) $x + (1)y + 0.0769z = -1.3846$ These equations can be solved in terms of z: x = 1.3846z + 4.9231 y = -0.0769z - 1.3846		(1)x	+(0)y - 1.	3846z =	= 4.923	1			
2 These equations can be solved in terms of z: x = 1.3846z + 4.9231 y = -0.0769z - 1.3846	RankA =	$(0)_{\gamma} \perp (1)_{\gamma} \perp 0.0760_{\gamma}1.3816$							
These equations can be solved in terms of z: x = 1.3846z + 4.9231 $y = -0.0769z - 1.3846$	2	$(0)\lambda$	(1)y + 0.0)/0 <i>)</i> Z =	- 1.50-	TU			
These equations can be solved in terms of z: x = 1.3846z + 4.9231 $y = -0.0769z - 1.3846$									
RankAb = $x = 1.3846z + 4.9231$ 2 $y = -0.0769z - 1.3846$		These equa	tions can be	solved i	n terms o	of <i>z</i> :			
v = -0.0769z - 1.3846	RankAb =	x = 1.3846z + 4.9231							
	2	v = -0.0769z - 1.3846							

Problem 8.15:

15.* Use MATLAB to solve the following problem:

$$x - 3y = 2$$

$$x + 5y = 18$$

$$4x - 6y = 10$$

$$A = 2$$

$$1 -3$$

$$1 -5$$

$$4 -6$$

$$b = 3$$

$$b = 3$$

$$x = 3$$

$$x = 1$$

$$3$$

$$x = 1$$

$$6.0928$$

$$2.2577$$