Chapter 8: Linear Algebraic Equations

- Matrix Methods for Linear Equations
- Uniqueness and Existence of Solutions
- Under-Determined Systems

Over-Determined Systems

Linear Algebraic Equations

For 2 Equations and 2 Unknowns, the solution is the intersection of the two lines. For 3 Equations and 3 Unknowns, the solution is the intersection of three planes.

Matrix Methods for Linear Systems of

Equations

The simplest system of linear equations is:

$$
\begin{aligned}
& a x+b y=c \\
& d x+e y=f
\end{aligned}
$$

Two equations and two unknowns (all coefficients are known). Can be solved by substitution, row reduction, Kramer's Rule. Cast the system in Vector Form:

$$
\left[\begin{array}{ll}
a & b \\
d & e
\end{array}\right] \cdot\left\{\begin{array}{l}
x \\
y
\end{array}\right\}=\left\{\begin{array}{l}
c \\
f
\end{array}\right\}
$$

Matrix*Column Vector $=$ Column Vector

$$
A \cdot z=B
$$

Matrix Methods for Linear Systems of

Equations

$$
A \cdot z=B
$$

Solve for solution vector z by multiplying both sides by A^{-1} (A Inverse [Matrix]):

$$
A^{-1} \cdot(A \cdot z)=A^{-1} \cdot(B)
$$

$$
\begin{gathered}
\text { LHS: } A^{-1} \cdot(A \cdot z)=\left(A^{-1} \cdot A\right) \cdot z=I \cdot z=z \\
A^{-1} \cdot A=I \text { (Identity Matrix): } I=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \\
z=A^{-1} \cdot B
\end{gathered}
$$

where

$$
A^{-1}=\left(\frac{1}{a e-b d}\right) \cdot\left[\begin{array}{cc}
e & -b \\
-d & a
\end{array}\right]
$$

Matrix Methods for Linear Systems of

Equations

A^{-1} Exists if the Determinant of Matrix A is both Square and Nonsingular:

$$
|A|=\operatorname{det}(A)=a e-b d \neq 0
$$

For a given linear system of equations, there may be:

- One Unique Solution
- An Infinite Number of Solutions
- No Solution

Use the Rank of Matrix A and the Rank of the Augmented Matrix [$A B$] to Establish the Uniqueness and Existence of the Solution.

$$
\begin{gathered}
\text { Rank_A }=\text { rank(A) } \\
\text { Rank_AB }=\text { rank([A B] })
\end{gathered}
$$

Uniqueness and Existence of the Solution

If Rank_A \neq Rank_AB, a Unique Solution Does Not Exist
If Rank_A = Rank_AB = Number of Unknowns, a Unique Solution Exists

If Rank_A = Rank_AB but Rank_A \neq Number of Unknowns, an Infinite Number of Solutions Exist

Uniqueness and Existence of the Solution

\% One Unique Solution:
\% $x-y=-1,3 x+y=9$
$A=[1-1 ; 31]$
$\mathrm{B}=[-1 ; 9]$
$A B=\left[\begin{array}{ll}A & B\end{array}\right]$
rank_A $=\operatorname{rank}(A)$
rank_AB $=\operatorname{rank}(A B)$
Det_A $=\operatorname{det}(A)$
$\operatorname{Inv} A=\operatorname{inv}(A)$
$z=I n v _A * B$

Matrix Methods for Linear Systems of

Equations

MATLAB has Several Methods of Solving Systems of Linear Equations:

- Matrix Inverse: $z=\operatorname{inv}(A) * B$ (Calculates the Inverse of A.)
- Left Division: $z=A \backslash B$ (Uses Gauss Elimination to Solve for z for Over-Determined Systems.)
- Pseudo-Inverse: z $=$ pinv (A) *B (Used When There are More Unknowns than Equations: Under-Determined Systems. This Method Provides One Solution, but Not All Solutions.)
- Row-Reduced Echelon Form: rref ([$\left.\begin{array}{ll}\mathrm{A} & \mathrm{B}\end{array}\right]$) (Also Used for Under-Determined Systems. This Method Provides a Set of Equations That Can be Used to Find All Solutions.)

Under-Determined Systems

Not Enough Information to Determine all of the Unknowns (Infinite Number of Solutions)

Case 1: Fewer Equations than Unknowns:

$$
\begin{gathered}
x+3 y-5 z=7 \\
-8 x-10 y+4 z=28
\end{gathered}
$$

Case 2: Two Equations are Not Independent:

$$
\begin{gathered}
x+3 y-5 z=7 \\
-8 x-10 y+4 z=28 \\
-16 x-20 y+8 z=56
\end{gathered}
$$

$($ Equation 3$)=2 *($ Equation 2$)$
Solve Under-Determined Systems using Pseudo-Inverse pinv, which finds one solution by minimizing the Euclidean Norm, or find all possible solutions by using the rref method (Row-Reduced Echelon Form).

Under-Determined Systems

\% Under-Determined System:
\% Inverse Method

$$
\begin{aligned}
& \% x+3 y-5 z=7, \quad-8 x-10 y+4 z=28 \\
& A=\left[\begin{array}{lll}
1 & 3 & -5 ;-8 \\
\hline
\end{array}\right] \\
& B=[7 ; 28] \\
& A B=[A \quad B] \\
& \operatorname{rank} A=\operatorname{rank}(A) \\
& \operatorname{rank} A B=\operatorname{rank}(A B) \\
& \operatorname{Det} A=\operatorname{det}(A) \\
& \operatorname{Inv} A=\operatorname{inv}(A) \\
& z=\operatorname{Inv} A * B
\end{aligned}
$$

Under-Determined Systems

\% Under-Determined System:
\% Pseudo-Inverse Method

$$
\begin{aligned}
& \circ \mathrm{x}+3 \mathrm{y}-5 \mathrm{z}=7,-8 \mathrm{x}-10 \mathrm{y}+4 \mathrm{z}=28 \\
& \mathrm{~A}=\left[\begin{array}{ll}
1 & 3
\end{array}-5 ;-8-104\right] \\
& \mathrm{B}=[7 ; 28] \\
& \mathrm{AB}=[\mathrm{A} B] \\
& \operatorname{rank} A=\operatorname{rank}(\mathrm{A}) \\
& \operatorname{rank} \mathrm{AB}=\operatorname{rank}(\mathrm{AB}) \\
& \mathrm{z}=\operatorname{pinv}(\mathrm{A}) * B
\end{aligned}
$$

Row-Reduced Echelon Form

$$
\begin{gathered}
x+3 y-5 z=7 \\
-8 x-10 y+4 z=28
\end{gathered}
$$

Replace (Equation 2$)$ by $8^{*}($ Equation 1$)+($ Equation 2$)$:

$$
\begin{gathered}
x+3 y-5 z=7 \\
0 x+14 y-36 z=84
\end{gathered}
$$

Divide (Equation 2) by 14 :

$$
\begin{gathered}
x+3 y-5 z=7 \\
0 x+y-\frac{36}{14} z=6
\end{gathered}
$$

Replace (Equation 1) by $-3 *($ Equation 2$)+($ Equation 1):

$$
\begin{gathered}
x+0 y+2.714 z=-11 \\
0 x+y-\frac{36}{14} z=6
\end{gathered}
$$

Infinite Number of Solutions because z can be any number:

$$
\begin{gathered}
x+2.714 z=-11 \\
y-\frac{36}{14} z=6
\end{gathered}
$$

Under-Determined Systems

\% Under-Determined System:
\% Row-Reduced Echelon Method
$\% x+3 y-5 z=7,-8 x-10 y+4 z=28$
$A=\left[\begin{array}{ccc}1 & 3 & -5 ;-8 \\ -10 & 4\end{array}\right]$
$B=[7 ; 28]$
$A B=\left[\begin{array}{ll}A & B\end{array}\right]$
rank_A $=\operatorname{rank}(A)$
rank_AB $=\operatorname{rank}(A B)$
$z=\operatorname{rref}([A, B])$

Over-Determined Systems

More Independent Equations than Unknowns.

If Rank_A = Rank_AB, A Unique Solution Exists: Use Left Division Method to find the Solution: $z=A \backslash B$

If Rank_A \neq Rank_AB, No Solution Exists: The Left Division Method gives a LeastSquares Solution, NOT an Exact Solution.

Over-Determined Systems

\% Over-Determined System:
\% $4 x+3 y=7 ; x-2 y=-1 ; 3 x+5 y=8$
$A=[43 ; 1-2 ; 35]$
$B=[7 ;-1 ; 8]$
$\mathrm{AB}=\left[\begin{array}{ll}\mathrm{A} & \mathrm{B}\end{array}\right]$
rank_A $=\operatorname{rank}(A)$
$\operatorname{rank} A B=\operatorname{rank}(A B)$
$z=A \backslash B$

Over-Determined Systems

\% Over-Determined System:
\% $4 x+3 y=6 ; x-2 y=-1 ; 3 x+5 y=8$
$A=[43 ; 1-2 ; 35]$
$B=[6 ;-1 ; 8]$
$A B=\left[\begin{array}{ll}A & B\end{array}\right]$
rank_A $=\operatorname{rank}(A)$ rank_AB $=\operatorname{rank}(A B)$
$z=A \backslash B$

Problem 8.2:

2.* a. Solve the following matrix equation for the matrix \mathbf{C}.

$$
\mathbf{A}(\mathbf{B C}+\mathbf{A})=\mathbf{B}
$$

b. Evaluate the solution obtained in part a for the case

$$
\begin{array}{c|c}
\mathbf{A}=\left[\begin{array}{rr}
7 & 9 \\
-2 & 4
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{rr}
4 & -3 \\
7 & 6
\end{array}\right] & \mathrm{A}= \\
A(B C+A)=B & \mathrm{~B}= \\
A^{-1} A(B C+A)=A^{-1} B & \\
B C+A=A^{-1} B & \\
B C=A^{-1} B-A & \mathrm{c}= \\
B^{-1} B C=B^{-1}\left(A^{-1} B-A\right) & \\
C=B^{-1}\left(A^{-1} B-A\right) &
\end{array}
$$

Problem 8.4:

The circuit shown in Figure P4 has five resistances and one applied voltage. Kirchhoff's voltage law applied to each loop in the circuit shown gives

$$
\begin{array}{r}
v-R_{2} i_{2}-R_{4} i_{4}=0 \\
-R_{2} i_{2}+R_{1} i_{1}+R_{3} i_{3}=0 \\
-R_{4} i_{4}-R_{3} i_{3}+R_{5} i_{5}=0
\end{array}
$$

Conservation of charge applied at each node in the circuit gives

$$
\begin{aligned}
& i_{6}=i_{1}+i_{2} \\
& i_{2}+i_{3}=i_{4} \\
& i_{1}=i_{3}+i_{5} \\
& i_{4}+i_{5}=i_{6}
\end{aligned}
$$

a) Write a MATLAB script file that uses given values of the applied voltage v and the values of the five resistances and solves for the six currents.
b) Use the program developed in part a) to find the currents for the case where $R_{1}=1 \mathrm{k} \Omega, R_{2}=5 \mathrm{k} \Omega, R_{3}=2 \mathrm{k} \Omega, R_{4}=10 \mathrm{k} \Omega, R_{5}=5 \mathrm{k} \Omega$, and $v=$ $100 V(1 \mathrm{k} \Omega=1000 \Omega)$.

Problem 8.4:

$$
\begin{gathered}
v-R_{2} i_{2}-R_{4} i_{4}=0 \\
-R_{1} i_{1}-R_{3} i_{3}+R_{2} i_{2}=0 \\
-R_{5} i_{5}+R_{4} i_{4}+R_{3} i_{3}=0 \\
i_{1}=i_{3}+i_{5} \\
i_{2}+i_{3}=i_{4} \\
i_{4}+i_{5}=i_{6} \\
i_{6}=i_{1}+i_{2}
\end{gathered}
$$

i_{6}

Unknowns: $i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}$

Problem 8.4:

$$
\begin{gathered}
(0) i_{1}+\left(-R_{2}\right) i_{2}+(0) i_{3}+\left(-R_{4}\right) i_{4}+(0) i_{5}+(0) i_{6}=(-v) \\
\left(-R_{1}\right) i_{1}+\left(R_{2}\right) i_{2}+\left(-R_{3}\right) i_{3}+(0) i_{4}+(0) i_{5}+(0) i_{6}=(0) \\
(0) i_{1}+(0) i_{2}+\left(R_{3}\right) i_{3}+\left(R_{4}\right) i_{4}+\left(-R_{5}\right) i_{5}+(0) i_{6}=(0) \\
(1) i_{1}+(0) i_{2}+(-1) i_{3}+(0) i_{4}+(-1) i_{5}+(0) i_{6}=(0) \\
(0) i_{1}+(1) i_{2}+(1) i_{3}+(-1) i_{4}+(0) i_{5}+(0) i_{6}=(0) \\
(0) i_{1}+(0) i_{2}+(0) i_{3}+(1) i_{4}+(1) i_{5}+(-1) i_{6}=(0) \\
(-1) i_{1}+(-1) i_{2}+(0) i_{3}+(0) i_{4}+(0) i_{5}+(1) i_{6}=(0)
\end{gathered}
$$

Unknowns: $i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}$

Problem 8.4:

A =

0	-5000	0	-10000	0
-1000	5000	-2000	0	0
0	0	2000	10000	-5000
1	0	-1	0	-1
0	1	1	-1	0
0	0	0	1	1
-1	-1	0	0	0

$b=$	$x=$
-100	0.0189
0	0.0049
0	0.0027
0	0.0076
0	0.0162
0	0.0238

11.* Solve the following equations:

$$
\begin{array}{r}
7 x+9 y-9 z=22 \\
3 x+2 y-4 z=12 \\
x+5 y-z=-2
\end{array}
$$

Problem 8.11:

Command Window

Problem 8.11: Scott Thomas
$\mathrm{A}=$
$\mathrm{b}=$

These equations can be solved in terms of z :

```
x1 =
    1.0000
        0
x2 =
    1.6437
    -1.2024
    -2.3684
```

The resulting equations are:

$$
(1) x+(0) y-1.3846 z=4.9231
$$

$$
(0) x+(1) y+0.0769 z=-1.3846
$$

$$
\begin{gathered}
x=1.3846 z+4.9231 \\
y=-0.0769 z-1.3846
\end{gathered}
$$

15.* Use MATLAB to solve the following problem:

$$
\begin{aligned}
& x-3 y=2 \\
& x+5 y=18 \\
& 4 x-6 y=10 \\
& \mathrm{~A}= \\
& 2 \\
& 18 \\
& 10
\end{aligned}
$$

