Chapter 9c: Numerical Methods for
Calculus and Differential Equations

Higher-Order Differential Equations
o Cauchy/State-Variable Form

o Euler Method

o MATLAB ODE Solver ode45

o 0de45 with Matrix Method
Matrix Methods for Linear Equations
Control System Toolbox

Higher-Order Differential Equations

The methods used to solve first-order differential equations can be used
to solve higher-order ordinary differential equations. Consider a Spring-
Mass-Damper system:

ANARRNRNRRRNRRRN RN

. F——V
—AAAMAAA—
m]
c]
I]
il]
1

§
xz(t)/x(0)

¢=0.0{]
¢=0.5|]
¢=1.0 ‘\
¢=L5 |

12 14

Higher-Order Differential Equations

The mass is m, the spring constant is k, and the damping coefficient is c.
Newton’s Second Law for this system is:

my+cy+ky=0

where the first derivative of position with respect to time isy = % and

2

. 4
the second derivative is j = d—tf

Solve this equation by turning it into a system of two first-order

differential equations. First, solve the equation for the second derivative:

L__C. Kk
y=——y =y

Cauchy/State-Variable Form

Let x; = y (Position) and x, = y (Melocity). Taking the derivative of the

first equation gives:
561=}'l=x2 or)°C1=x2

Taking the derivative of the second equation gives:

. . c . k . c k
Xo =YV =——V——V O Xo=——X, ——X
2=y my my 2 2T M

This is called the Cauchy Form or the State-Variable Form:

561= xZ

Euler Method

Now use the Euler Method to discretize the system of equations as

follows:
X1k+1 = X1 T AL - X5

C k
Xpk+1 = X + AL - (—Exz,k — Eka)

This system of equations is solved using the same Time-Stepping
technique that was shown previously using the Euler Method.

MATLAB ODE Solver ode45

Alternatively, use ode 45 to solve the system:
[t, X] = oded4s5(@xdot, tspan, x0)

Function File:

[ir‘nd.r‘n* *| springmassdamper.m ®

function xXdot = =smd(T,xX)

T Spring-Mass-Damper =y=stem

— m= 1;

c = 1;

— E=1;

— xdot (1) = =x(2):

— ®xdot(2) = —-co/m*=x(2) - k/m*x(1l):
— xdot = [®dot(l):; =xdot(2)]:

end

T R B O T L S
I

e
=
I

MATLAB ODE Solver ode45

Script File:

smd.m™ H[springmassdamper.m* 3{]

o -] & A = L R B

i
=

T Spring-Mass-Damper =ystem

clo
clear

[t,x] = oded45(@zmd, [0, 101, [1, O]):

X :

plot(t,x(:,1),t, X(:,2)), Xlabel('time (=3)")
vliabel ('Pozition (m) and Velocity (m/=)")
legend('Po=sition', 'Velocity', "Location', '"Best')

Fosition (m) and Yelocity (m/s)

MATLAB ODE Solver ode45

.1

0.8}
0.6}
04}
0.2}

ol
02F
n4t

-0.6
0

Fosition

Velocity |

ode45 with Matrix Method

The general Spring-Mass-Damper problem, where u(t) is a forcing
function, can be solved by casting the equation in Matrix Form:

my + cy + ky = u(t)

561=x2
,) c k
X>»=—U — X ——X
2 m m 2 m 1

: 0 1
= [_% _%] [al+] 2]

0
1
m

ode45 with Matrix Method
” 0 1]
[552] - [—% —%] . [x2] T

In Matrix Form:;:

- u(t)

0
1
m

X =Ax+ B-u(t)

1| x-[)

m

where
0 1
— k C B =

m m

ode45 with Matrix Method

Function File:

[mﬂdlwf H]spﬂnwﬂaﬂdawmeﬂmﬂ* %

(1 5 T ¢ I Y e o TR G Y R SR B % N e

e el el i
A =

function Xdot = smd2 ([L,X)
T Spring-Mass-Damper system
m= 1;

c = 1;

k= 1;

z = -0.05;

a = 1;

u = z¥*zin(a*t);

L = [0 1; -k/m -c/m]:;

B = [0; 1/m];

xdot = A*x + B*u;

end

ode45 with Matrix Method

Script File:

smdd.m® = [springmassdamper}l.m %

o o =] oy N = L k3

i
=

% Spring-HMass-Damper system: Matrix Method

clc
clear

[t,x] = oded45(@smd2, [0, 25], [1, 01):

i

plot(t,x(:,1),t, x(:,2)), Xlabel('time (=) ")
vlabel ('Po=zition (m) and Velocity (m/=)")

ITT

legend('Po=zition', "Velocity', 'Location', "Bezst')

Fosition {m) and YVelocity (mis)

ode45 with Matrix Method

1

0.8

0.6

04

0.2}

0k

-0.2

04l

-0.6

Fosition

Velocity |

| |
0 5 10
time (s)

Matrix Methods for Linear Equations

Spring-Mass-Damper system in Reduced Form or Transfer Function
Form:

my + cy + ky = u(t)

SMD in State-Variable or State-Space Form:

561=x2
. 1) C k
X>» = —U — X, ——X
2 m m 2 m 1

: 0 1
=k o) Bl e

0
1
m

Matrix Methods for Linear Equations
SMD in Matrix Form:

X =Ax+B-u(t)

s

where
0 1

k C B =

All three forms describe the same second-order differential equation.
When the coefficients are constant, the above representation is called a
Linear, Time-Invariant equation, or an LTI Object or LTI System.

Matrix Methods for Linear Equations

X =Ax+ B - u(t)

0 1 0 X
A=| K _c B=i] x= [
m m m

In this case, there are only two outputs: x; and x,, which represent the
position and the velocity of the mass m. The outputs are given in the

following matrix:
y = Cx + Du(t)

If the position of the mass is desired, C = [1,0]. If the velocity Is desired,
C = [0,1]. In all cases, D = 0.

Control System Toolbox

The most general case for a second-order LTI System in Reduced Form
IS:

e LN
(ldxz dx V= dx eu

This system can be input to MATLAB as follows:
sys = tf(right,left)

where t £ stands for Transfer Function. The right- and left-hand
coefficient vectors are:

right = [d, e] andleft = [a, b, c]

Control System Toolbox
Alternatively, the LTI System can be input to MATLAB in State-Space

Form directly:

= [0; 1/m]

= 0

n U Q w

= [0, 1; -k/m, -c/m]
= [1, o] for position of mass

ys = ss(A,B,C,D)

Function Required Form | Initial Conditions
initial(sys, x0) Free Response (Undriven) | State Default Zero or Input
impulse(sys) Impulse Response Transfer or State | Zero
step(sys) Unit-Step Transfer or State | Zero

lsim(sys,u,t,x0)

Arbitrary Input Response

Transfer or State

Default Zero or Input

Initial-Condition Response

initial (sys,xo0) gives the Undriven Response of the system of
equations, where u(t) = 0, subject to a set of initial conditions:

2y + 3y + 5y = u(t), y(0) =10, y(0)=5

0
1:|
2

The system must be cast into State-Variable or State-Space (ss) form.

0 1
5 3

2 2

A= B =

Initial-Condition Response

Fezponze to Initial Conditions

12

10

=[01;-5/2-3/2];

= [0; 1/2]; °r

=[10]; el
D =0; %
sys_ss =ss(A,B,C,D); |
x0 =[10 5]; 20

initial(sys_ss, x0)

Time [(zeconds)

Impulse Response

] 3':' I I I I I I
impulse(sys) =010
gives the response of . ﬂ a :ggg
. - a =008 H
the system of equations a=0.04
to an Impulse Al =0 |
Function, wherethe &
Initial conditions are set = | |
to zero. 5 N
=
—of .
5 L _
-DIII.E -III.II‘r -III.IS 0.2 -III.I‘I IIII 0.1 0.2 III.I3 III.II‘r 0.5

Impulse Function:
u(t) = —e_xZ/“2 asa—0

Impulse Response

Impulze Eesponse

0.2

=[01;-5/2-3/2]; o}
= [0; 1/2];
=[10];
D=0;
sys_ss =ss(A,B,C,D); o=
impulse(sys_ss)

Amplitude

Time (zeconds)

Unit-Step Response

step(sys) givesthe
response of the system of
equations to a Unit-Step
Function, where the
Initial conditions are set
to zero.

LInit-Step Function

1

0.5

0.2 F

0.6

0.4F

-0.2
-1

..

..

..

...

i
-0.5

i
1.5

Unit—Step Function:

u(t) =

t<O0
t=0

)

)

Unit-Step Response

Step Responze

— O 1, _5/2 _3/2], 1 R e U —
=[0; 1/2];
— 1 O]; E 015

D= O’ E 01+

sys_ss = ss(A,B,C,D);

step(sys_ss) .|

Time [Feconds)

Amplitude

0.25

0.15 |

0.1

0.05 [

Unit-Step Response

step Response

\ Steady State Value

]]]]]]
i

Time (seconds)

Amplitude

Unit-Step Response

Step Response

0.2
+ 2% of SS Value
02 S S L R L L S TR L S L T g L s S e
|
0.15 I -
I
. . I
L Settling Time >]
|
I
0.05 ' -
I
I
0 | | | | L |
0 1 2 i

Time (seconds)

Amplitude

0.15 [

0.1

0.05

Unit-Step Response

Step Response

I
I
I
: Rise Time
I
I
I

< E 10% of SS Value

0 1 2

Time (seconds)

Amplitude

0.15 [

0.1

0.05 [

Unit-Step Response

Step Response

. —e<—— Peak Response

Peak Time

Time (seconds)

Signal Generator: Sine Wave

[u,t] = gensig('sin',5,30,0.01)
plot(t, u, 'LineWidth',2)
xlabel('t'), ylabel('u(t)')
axis([030-1.2 1.2])

aine WWave

grid on
title('Sine Wave')
% 1] T TR FUUUIY U S DI M R SN R F A
A O Y O RN
O4ak.o 1 é % ; ”..é”.E 1
Ok i
e =0 TR T ST Y ; % é ; a
Y Y SN U __________ U SR U _________ U _________ U
0 é 1b 1% EE 2% a0
t

Signal Generator: Square Wave

[u,t] = gensig('square’,5,30,0.01)

plot(t, u, 'LineWidth',2)
xlabel('t'), ylabel('u(t)')
axis([030-1.2 1.2])
grid on

title('Square Wave')

0.5

sguare YWiave

|
10

i
20

|
25

30

Signal Generator: Pulse Wave

[u,t] = gensig(pulse',5,30,0.01)

plot(t, u, 'LineWidth',2)
xlabel('t'), ylabel('u(t)")
axis([030-1.2 1.2])
grid on

title(‘Pulse Wave')

Fulse Wave
I

i
] 1

l !
0 14

i
20

!
25

30

Arbitrary Input Response

lsim(sys, u,t) givesthe response of the system of equations to an
Arbitrary Input Function, where the initial conditions are set to zero.

=ine YWave Response

sine WWave Input | |
Maszs Hespaonse

— O 1’ _5/2 _3/2]’ nek R R O R i

— :O; 1/2]; 06 F i
" 0.4 : : S P 3 ERERE A SRR P
=[10]; = 02 . . '
D=0; =
sys_ss = ss(A,B,C,D); 2 0ol

!I:| |

[u,t] = gensig('sin',5,30,0.01);
[y, t] = Isim(sys_ss, u,t); ey
plot(t, u, t, y),xlabel('t")

Problem 9.30:

30. The following equation describes the motion of a certain mass connected
to a spring, with viscous friction on the surface

3y + 18y + 102y = f(1)

where f(¢) is an applied force. Suppose that f(¢) = 0 for < 0 and f(r) =
10 fort = 0.

a. Plot y(¢) for y(0) = y(0) = 0.
b. Plot y(¢) for y(0) = 0 and y(0) = 10. Discuss the effect of the nonzero
initial velocity.
Solve using the Euler Method. This is a second-order ordinary

differential equation. Rewrite the equation by solving for the second

derivative.

.18 102 +10_ v 34 +10
Y = 33’ 33’ 3 - Y y 3

Problem 9.30:

Let x; = y and x, = y. Taking the derivative of the first equation gives
X1 =Y =Xy OF X{ =Xy

Taking the derivative of the second equation gives

, . , 10 10
Xp =Yy = —6y—34y+?= —6x, — 34x4 +?

or

| 10
Xy = —6X2 — 34X1 + ?

The original second-order ordinary differential equation is now
converted into two first-order ordinary differential equations that are
coupled.

10
x.]_ = X9, .X'Z — _6x2 — 34‘x1 +?, xl(O) — O, xZ(O) =(

The system of equations can be discretized as follows:
Xij+1 = X1, AL Xpp

10

x2,k+1 — xz,k + At - <_6X2’k — 34X1’k + ?)

Problem 9.30:
The initial conditions are y(0) = x;(0) = 0 and y(0) = x,(0) = 0. Let
At = 0.01 seconds.

For k = 1:
x1(2) = x,(1) + At - x,(1) = (0.0) + (0.01)(0.0) = 0.0
X5 (2) = x,(1) + At[—6x,(1) — 34x,(1) + 10/3]
x,(2) = (0.0) + (0.01)[—(6)(0.0) — (34)(0.0) + 10/3] = 0.03

For k = 2:
%, (3) = x,(2) + At - x,(2) = (0.0) + (0.01)(0.03) = 0.0003
x5(3) = x5(2) + At|—6x,(2) — 34x,(2) + 10/3]
x,(3) = (0.03) + (0.01)[—(6)(0.03) — (34)(0.0) + 10/3] = 0.0646

Problem 9.30:

Problem 9.30: Scott Thomas
-1-2 | | | | |

FPart a: dy/dt(0)
0.8 Part b: dy/dt(0)

0
1

0

0.6

Function yi(t)

!
i
1

=
P

