Chapter 9c: Numerical Methods for Calculus and Differential Equations

- Higher-Order Differential Equations
 - Cauchy/State-Variable Form
 - Euler Method
 - MATLAB ODE Solver ode45
 - ode45 with Matrix Method
- Matrix Methods for Linear Equations
- Control System Toolbox

Higher-Order Differential Equations

The methods used to solve first-order differential equations can be used to solve higher-order ordinary differential equations. Consider a **Spring-Mass-Damper** system:

Higher-Order Differential Equations

The mass is m, the spring constant is k, and the damping coefficient is c. Newton's Second Law for this system is:

 $m\ddot{y} + c\dot{y} + ky = 0$

where the first derivative of position with respect to time is $\dot{y} = \frac{dy}{dt}$ and the second derivative is $\ddot{y} = \frac{d^2y}{dt^2}$

Solve this equation by turning it into a system of two first-order differential equations. First, solve the equation for the second derivative:

$$\ddot{y} = -\frac{c}{m}\dot{y} - \frac{k}{m}y$$

Cauchy/State-Variable Form

Let $x_1 = y$ (Position) and $x_2 = \dot{y}$ (Velocity). Taking the derivative of the first equation gives:

$$\dot{x}_1 = \dot{y} = x_2$$
 or $\dot{x}_1 = x_2$

Taking the derivative of the second equation gives:

$$\dot{x}_2 = \ddot{y} = -\frac{c}{m}\dot{y} - \frac{k}{m}y$$
 or $\dot{x}_2 = -\frac{c}{m}x_2 - \frac{k}{m}x_1$

This is called the Cauchy Form or the State-Variable Form:

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = -\frac{c}{m}x_2 - \frac{k}{m}x_1$$

Euler Method

Now use the Euler Method to discretize the system of equations as follows:

$$x_{1,k+1} = x_{1,k} + \Delta t \cdot x_{2,k}$$

$$x_{2,k+1} = x_{2,k} + \Delta t \cdot \left(-\frac{c}{m} x_{2,k} - \frac{k}{m} x_{1,k} \right)$$

This system of equations is solved using the same **Time-Stepping** technique that was shown previously using the **Euler Method**.

MATLAB ODE Solver ode45

Alternatively, use ode45 to solve the system:

[t, x] = ode45(@xdot, tspan, x0)

Function File:

smd.m* × springmassdamper.m ×								
1		<pre>[] function xdot = smd(t,x)</pre>						
2		<pre>% Spring-Mass-Damper system</pre>						
3								
4	—	m = 1;						
5	—	c = 1;						
6	—	k = 1;						
7	—	xdot(1) = x(2);						
8		xdot(2) = -c/m*x(2) - k/m*x(1);						
9	—	xdot = [xdot(1); xdot(2)];						
10	—	^L end						
11								

MATLAB ODE Solver ode45

Script File:

smd.m* × springmassdamper.m* ×						
1		% Spring-Mass-Damper system				
2						
3	—	clc				
4	-	clear				
5						
6	-	[t,x] = ode45(@smd, [0, 10], [1, 0]);				
7	—	x;				
8	—	<pre>plot(t,x(:,1),t, x(:,2)), xlabel('time (s)')</pre>				
9	—	<pre>ylabel('Position (m) and Velocity (m/s)')</pre>				
10	—	<pre>legend('Position','Velocity','Location','Best')</pre>				
11						

MATLAB ODE Solver ode45

The general **Spring-Mass-Damper** problem, where u(t) is a forcing function, can be solved by casting the equation in **Matrix Form**:

$$m\ddot{y} + c\dot{y} + ky = u(t)$$
$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = \frac{1}{m}u(t) - \frac{c}{m}x_2 - \frac{k}{m}x_1$$
$$\begin{bmatrix} \dot{x}_1\\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1\\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix} \cdot \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} 0\\ 1\\ \frac{1}{m} \end{bmatrix} \cdot u(t)$$

ode45 with Matrix Method $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ \frac{1}{m} \end{bmatrix} \cdot u(t)$

In Matrix Form:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B} \cdot u(t)$$

where

$$\mathbf{A} = \begin{bmatrix} 0 & 1\\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 0\\ 1\\ \frac{1}{m} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1\\ x_2 \end{bmatrix}$$

Function File:

smd2.m* × springmassdamper2.m* ×							
1	= function xdot = smd2(t,x)						
2		<pre>% Spring-Mass-Damper system</pre>					
3							
4	—	m = 1;					
5	—	c = 1;					
6	—	k = 1;					
7	—	z = -0.05;					
8	—	a = 1;					
9	—	u = z*sin(a*t);					
10	—	A = [0 1; -k/m -c/m];					
11	—	B = [0; 1/m];					
12	—	xdot = A*x + B*u;					
13	—	^L end					
14							

Script File:

smd2.m* × springmassdamper2.m ×							
1		<pre>% Spring-Mass-Damper system: Matrix Method</pre>					
2							
3	-	clc					
4	-	clear					
5							
6	-	[t,x] = ode45(@smd2, [0, 25], [1, 0]);					
7	-	x;					
8	-	<pre>plot(t,x(:,1),t, x(:,2)), xlabel('time (s)')</pre>					
9	-	<pre>ylabel('Position (m) and Velocity (m/s)')</pre>					
10	—	<pre>legend('Position','Velocity','Location','Best')</pre>					
11							

Matrix Methods for Linear Equations

Spring-Mass-Damper system in **Reduced Form** or **Transfer Function Form**:

$$m\ddot{y} + c\dot{y} + ky = u(t)$$

SMD in State-Variable or State-Space Form:

$$\dot{x}_1 = x_2$$

$$\dot{x}_{2} = \frac{1}{m}u(t) - \frac{c}{m}x_{2} - \frac{k}{m}x_{1}$$
$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} \cdot u(t)$$

Matrix Methods for Linear Equations

SMD in Matrix Form:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B} \cdot u(t)$$

where

$$\mathbf{A} = \begin{bmatrix} 0 & 1\\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 0\\ 1\\ \frac{1}{m} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1\\ x_2 \end{bmatrix}$$

All three forms describe the same second-order differential equation. When the coefficients are constant, the above representation is called a Linear, Time-Invariant equation, or an **LTI Object** or **LTI System**.

Matrix Methods for Linear Equations

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B} \cdot u(t)$

$$\mathbf{A} = \begin{bmatrix} 0 & 1\\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 0\\ 1\\ \frac{1}{m} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1\\ x_2 \end{bmatrix}$$

In this case, there are only two outputs: x_1 and x_2 , which represent the position and the velocity of the mass m. The outputs are given in the following matrix:

$$\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\boldsymbol{u}(t)$$

If the position of the mass is desired, C = [1,0]. If the velocity is desired, C = [0,1]. In all cases, D = 0.

Control System Toolbox

The most general case for a second-order **LTI System** in **Reduced Form** is:

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = d\frac{du}{dx} + eu$$

This system can be input to MATLAB as follows:

where tf stands for **Transfer Function**. The right- and left-hand coefficient vectors are:

right = [d, e] and left = [a, b, c]

Control System Toolbox

Alternatively, the **LTI System** can be input to MATLAB in **State-Space Form** directly:

$$A = [0, 1; -k/m, -C/m]$$

B = [0; 1/m]

C = [1, 0] for position of mass

D = 0

```
sys = ss(A, B, C, D)
```

	Function	Required Form	Initial Conditions
initial(sys,x0)	Free Response (Undriven)	State	Default Zero or Input
impulse(sys)	Impulse Response	Transfer or State	Zero
step(sys)	Unit-Step	Transfer or State	Zero
lsim(sys,u,t,x0)	Arbitrary Input Response	Transfer or State	Default Zero or Input

Initial-Condition Response

initial(sys, x0) gives the Undriven Response of the system of equations, where u(t) = 0, subject to a set of initial conditions:

 $2\ddot{y} + 3\dot{y} + 5y = u(t), \qquad y(0) = 10, \qquad \dot{y}(0) = 5$ $\mathbf{A} = \begin{bmatrix} 0 & 1\\ -\frac{5}{2} & -\frac{3}{2} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 0\\ 1\\ \frac{1}{2} \end{bmatrix}$

The system must be cast into State-Variable or State-Space (ss) form.

Initial-Condition Response

Impulse Response

impulse(sys)
gives the response of
the system of equations
to an Impulse
Function, where the
initial conditions are set
to zero.

Impulse Response

step(sys) gives the response of the system of equations to a **Unit-Step Function**, where the initial conditions are set to zero.

Signal Generator: Sine Wave

[u,t] = gensig('sin',5,30,0.01)
plot(t, u, 'LineWidth',2)
xlabel('t'), ylabel('u(t)')
axis([0 30 -1.2 1.2]) 1
grid on 0.8
title('Sine Wave') 0.6

Signal Generator: Square Wave

[u,t] = gensig('square',5,30,0.01)plot(t, u, 'LineWidth',2) Square Wave xlabel('t'), ylabel('u(t)') axis([0 30 -1.2 1.2]) 1 grid on title('Square Wave') 0.8 0.6 Ð 0.4

Signal Generator: Pulse Wave

Arbitrary Input Response

lsim(sys, u,t) gives the response of the system of equations to an **Arbitrary Input Function**, where the initial conditions are set to zero.

30. The following equation describes the motion of a certain mass connected to a spring, with viscous friction on the surface

 $3\ddot{y} + 18\dot{y} + 102y = f(t)$

where f(t) is an applied force. Suppose that f(t) = 0 for t < 0 and f(t) = 10 for $t \ge 0$.

- a. Plot y(t) for $y(0) = \dot{y}(0) = 0$.
- b. Plot y(t) for y(0) = 0 and $\dot{y}(0) = 10$. Discuss the effect of the nonzero initial velocity.

Solve using the **Euler Method**. This is a second-order ordinary differential equation. Rewrite the equation by solving for the second derivative.

$$\ddot{y} = -\frac{18}{3}\dot{y} - \frac{102}{3}y + \frac{10}{3} = -6\dot{y} - 34y + \frac{10}{3}$$

Let $x_1 = y$ and $x_2 = \dot{y}$. Taking the derivative of the first equation gives $\dot{x_1} = \dot{y} = x_2$ or $\dot{x_1} = x_2$ Taking the derivative of the second equation gives $\dot{x_2} = \ddot{y} = -6\dot{y} - 34y + \frac{10}{3} = -6x_2 - 34x_1 + \frac{10}{3}$

or

$$\dot{x}_2 = -6x_2 - 34x_1 + \frac{10}{3}$$

The original second-order ordinary differential equation is now converted into two first-order ordinary differential equations that are coupled.

$$\dot{x_1} = x_2, \qquad \dot{x}_2 = -6x_2 - 34x_1 + \frac{10}{3}, \qquad x_1(0) = 0, \qquad x_2(0) = 0$$

The system of equations can be discretized as follows:

$$x_{1,k+1} = x_{1,k} + \Delta t \cdot x_{2,k}$$
$$x_{2,k+1} = x_{2,k} + \Delta t \cdot \left(-6x_{2,k} - 34x_{1,k} + \frac{10}{3}\right)$$

The initial conditions are $y(0) = x_1(0) = 0$ and $\dot{y}(0) = x_2(0) = 0$. Let $\Delta t = 0.01$ seconds.

For k = 1:

$$x_1(2) = x_1(1) + \Delta t \cdot x_2(1) = (0.0) + (0.01)(0.0) = 0.0$$

$$x_2(2) = x_2(1) + \Delta t [-6x_2(1) - 34x_1(1) + 10/3]$$

$$x_2(2) = (0.0) + (0.01)[-(6)(0.0) - (34)(0.0) + 10/3] = 0.0\overline{3}$$

For
$$k = 2$$
:

 $\begin{aligned} x_1(3) &= x_1(2) + \Delta t \cdot x_2(2) = (0.0) + (0.01)(0.0\overline{3}) = 0.000\overline{3} \\ x_2(3) &= x_2(2) + \Delta t [-6x_2(2) - 34x_1(2) + 10/3] \\ x_2(3) &= (0.0\overline{3}) + (0.01)[-(6)(0.0\overline{3}) - (34)(0.0) + 10/3] = 0.064\overline{6} \end{aligned}$

