
Chapter 9c: Numerical Methods for

Calculus and Differential Equations
• Higher-Order Differential Equations

o Cauchy/State-Variable Form

o Euler Method

o MATLAB ODE Solver ode45

o ode45 with Matrix Method

• Matrix Methods for Linear Equations

• Control System Toolbox

Higher-Order Differential Equations
The methods used to solve first-order differential equations can be used

to solve higher-order ordinary differential equations. Consider a Spring-

Mass-Damper system:

y

Higher-Order Differential Equations
The mass is m, the spring constant is k, and the damping coefficient is c.

Newton’s Second Law for this system is:

𝑚 𝑦 + 𝑐 𝑦 + 𝑘𝑦 = 0

where the first derivative of position with respect to time is 𝑦 =
𝑑𝑦

𝑑𝑡
and

the second derivative is 𝑦 =
𝑑2𝑦

𝑑𝑡2

Solve this equation by turning it into a system of two first-order

differential equations. First, solve the equation for the second derivative:

 𝑦 = −
𝑐

𝑚
 𝑦 −

𝑘

𝑚
𝑦

Cauchy/State-Variable Form
Let 𝑥1 = 𝑦 (Position) and 𝑥2 = 𝑦 (Velocity). Taking the derivative of the

first equation gives:

 𝑥1 = 𝑦 = 𝑥2 or 𝑥1 = 𝑥2

Taking the derivative of the second equation gives:

 𝑥2 = 𝑦 = −
𝑐

𝑚
 𝑦 −

𝑘

𝑚
𝑦 or 𝑥2 = −

𝑐

𝑚
𝑥2 −

𝑘

𝑚
𝑥1

This is called the Cauchy Form or the State-Variable Form:

 𝑥1= 𝑥2

 𝑥2= −
𝑐

𝑚
𝑥2 −

𝑘

𝑚
𝑥1

Euler Method
Now use the Euler Method to discretize the system of equations as

follows:

𝑥1,𝑘+1 = 𝑥1,𝑘 + ∆𝑡 ∙ 𝑥2,𝑘

𝑥2,𝑘+1 = 𝑥2,𝑘 + ∆𝑡 ∙ −
𝑐

𝑚
𝑥2,𝑘 −

𝑘

𝑚
𝑥1,𝑘

This system of equations is solved using the same Time-Stepping

technique that was shown previously using the Euler Method.

MATLAB ODE Solver ode45
Alternatively, use ode45 to solve the system:

[t, x] = ode45(@xdot, tspan, x0)

Function File:

MATLAB ODE Solver ode45
Script File:

MATLAB ODE Solver ode45

ode45 with Matrix Method
The general Spring-Mass-Damper problem, where 𝑢 𝑡 is a forcing

function, can be solved by casting the equation in Matrix Form:

𝑚 𝑦 + 𝑐 𝑦 + 𝑘𝑦 = 𝑢(𝑡)

 𝑥1 = 𝑥2

 𝑥2 =
1

𝑚
𝑢(𝑡) −

𝑐

𝑚
𝑥2 −

𝑘

𝑚
𝑥1

 𝑥1

 𝑥2
=

0 1

−
𝑘

𝑚
−

𝑐

𝑚

∙
𝑥1

𝑥2
+

0
1

𝑚

∙ 𝑢(𝑡)

ode45 with Matrix Method

 𝑥1

 𝑥2
=

0 1

−
𝑘

𝑚
−

𝑐

𝑚

∙
𝑥1

𝑥2
+

0
1

𝑚

∙ 𝑢(𝑡)

In Matrix Form:

 𝐱 = 𝐀𝐱 + 𝐁 ∙ 𝑢(𝑡)
where

𝐀 =
0 1

−
𝑘

𝑚
−

𝑐

𝑚

𝐁 =
0
1

𝑚

𝐱 =
𝑥1

𝑥2

ode45 with Matrix Method
Function File:

ode45 with Matrix Method
Script File:

ode45 with Matrix Method

Matrix Methods for Linear Equations
Spring-Mass-Damper system in Reduced Form or Transfer Function

Form:

𝑚 𝑦 + 𝑐 𝑦 + 𝑘𝑦 = 𝑢(𝑡)

SMD in State-Variable or State-Space Form:

 𝑥1 = 𝑥2

 𝑥2 =
1

𝑚
𝑢(𝑡) −

𝑐

𝑚
𝑥2 −

𝑘

𝑚
𝑥1

 𝑥1

 𝑥2
=

0 1

−
𝑘

𝑚
−

𝑐

𝑚

∙
𝑥1

𝑥2
+

0
1

𝑚

∙ 𝑢(𝑡)

Matrix Methods for Linear Equations
SMD in Matrix Form:

 𝐱 = 𝐀𝐱 + 𝐁 ∙ 𝑢(𝑡)
where

𝐀 =
0 1

−
𝑘

𝑚
−

𝑐

𝑚

𝐁 =
0
1

𝑚

𝐱 =
𝑥1

𝑥2

All three forms describe the same second-order differential equation.

When the coefficients are constant, the above representation is called a

Linear, Time-Invariant equation, or an LTI Object or LTI System.

Matrix Methods for Linear Equations
 𝐱 = 𝐀𝐱 + 𝐁 ∙ 𝑢(𝑡)

𝐀 =
0 1

−
𝑘

𝑚
−

𝑐

𝑚

𝐁 =
0
1

𝑚

𝐱 =
𝑥1

𝑥2

In this case, there are only two outputs: 𝑥1 and 𝑥2, which represent the

position and the velocity of the mass 𝑚. The outputs are given in the

following matrix:

𝐲 = 𝐂𝐱 + 𝐃𝒖(𝑡)

If the position of the mass is desired, 𝐂 = [1,0]. If the velocity is desired,

𝐂 = [0,1]. In all cases, 𝐃 = 0.

Control System Toolbox
The most general case for a second-order LTI System in Reduced Form

is:

𝑎
𝑑2𝑦

𝑑𝑥2
+ 𝑏

𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 𝑑

𝑑𝑢

𝑑𝑥
+ 𝑒𝑢

This system can be input to MATLAB as follows:

sys = tf(right,left)

where tf stands for Transfer Function. The right- and left-hand

coefficient vectors are:

right = [d, e] and left = [a, b, c]

Control System Toolbox
Alternatively, the LTI System can be input to MATLAB in State-Space

Form directly:

A = [0, 1; -k/m, -c/m]
B = [0; 1/m]
C = [1, 0] for position of mass

D = 0
sys = ss(A,B,C,D)

Function Required Form Initial Conditions

initial(sys,x0) Free Response (Undriven) State Default Zero or Input

impulse(sys) Impulse Response Transfer or State Zero

step(sys) Unit-Step Transfer or State Zero

lsim(sys,u,t,x0) Arbitrary Input Response Transfer or State Default Zero or Input

Initial-Condition Response
initial(sys,x0) gives the Undriven Response of the system of

equations, where 𝑢 𝑡 = 0, subject to a set of initial conditions:

2 𝑦 + 3 𝑦 + 5𝑦 = 𝑢 𝑡 , 𝑦 0 = 10, 𝑦 0 = 5

𝐀 =
0 1

−
5

2
−

3

2

𝐁 =
0
1

2

The system must be cast into State-Variable or State-Space (ss) form.

Initial-Condition Response

A = [0 1; -5/2 -3/2];
B = [0; 1/2];
C = [1 0];
D = 0;
sys_ss = ss(A,B,C,D);
x0 = [10 5];
initial(sys_ss, x0)

Impulse Response
impulse(sys)

gives the response of

the system of equations

to an Impulse

Function, where the

initial conditions are set

to zero.

Impulse Function:

𝑢 𝑡 =
1

𝑎 𝜋
𝑒−𝑥2/𝑎2

as 𝑎 → 0

Impulse Response

A = [0 1; -5/2 -3/2];
B = [0; 1/2];
C = [1 0];
D = 0;
sys_ss = ss(A,B,C,D);
impulse(sys_ss)

Unit-Step Response
step(sys) gives the

response of the system of

equations to a Unit-Step

Function, where the

initial conditions are set

to zero.

Unit−Step Function:

𝑢 𝑡 =
0, 𝑡 < 0
1, 𝑡 ≥ 0

Unit-Step Response

A = [0 1; -5/2 -3/2];
B = [0; 1/2];
C = [1 0];
D = 0;
sys_ss = ss(A,B,C,D);
step(sys_ss)

Unit-Step Response

Steady State Value

Unit-Step Response

Settling Time

± 2% of SS Value

Unit-Step Response

Rise Time

90% of SS Value

10% of SS Value

Unit-Step Response

Peak Time

Peak Response

Signal Generator: Sine Wave

[u,t] = gensig('sin',5,30,0.01)
plot(t, u, 'LineWidth',2)
xlabel('t'), ylabel('u(t)')
axis([0 30 -1.2 1.2])
grid on
title('Sine Wave')

Signal Generator: Square Wave

[u,t] = gensig('square',5,30,0.01)
plot(t, u, 'LineWidth',2)
xlabel('t'), ylabel('u(t)')
axis([0 30 -1.2 1.2])
grid on
title('Square Wave')

Signal Generator: Pulse Wave

[u,t] = gensig(pulse',5,30,0.01)
plot(t, u, 'LineWidth',2)
xlabel('t'), ylabel('u(t)')
axis([0 30 -1.2 1.2])
grid on
title(‘Pulse Wave')

Arbitrary Input Response
lsim(sys, u,t) gives the response of the system of equations to an

Arbitrary Input Function, where the initial conditions are set to zero.

A = [0 1; -5/2 -3/2];
B = [0; 1/2];
C = [1 0];
D = 0;
sys_ss = ss(A,B,C,D);
[u,t] = gensig('sin',5,30,0.01);
[y, t] = lsim(sys_ss, u,t);
plot(t, u, t, y),xlabel('t')

Problem 9.30:

Solve using the Euler Method. This is a second-order ordinary

differential equation. Rewrite the equation by solving for the second

derivative.

 𝑦 = −
18

3
 𝑦 −

102

3
𝑦 +

10

3
= −6 𝑦 − 34𝑦 +

10

3

Problem 9.30:

Let 𝑥1 = 𝑦 and 𝑥2 = 𝑦. Taking the derivative of the first equation gives

 𝑥1 = 𝑦 = 𝑥2 or 𝑥1 = 𝑥2

Taking the derivative of the second equation gives

 𝑥2 = 𝑦 = −6 𝑦 − 34𝑦 +
10

3
= −6𝑥2 − 34𝑥1 +

10

3
or

 𝑥2 = −6𝑥2 − 34𝑥1 +
10

3
The original second-order ordinary differential equation is now

converted into two first-order ordinary differential equations that are

coupled.

 𝑥1 = 𝑥2, 𝑥2 = −6𝑥2 − 34𝑥1 +
10

3
, 𝑥1 0 = 0, 𝑥2 0 = 0

The system of equations can be discretized as follows:

𝑥1,𝑘+1 = 𝑥1,𝑘 + ∆𝑡 ∙ 𝑥2,𝑘

𝑥2,𝑘+1 = 𝑥2,𝑘 + ∆𝑡 ∙ −6𝑥2,𝑘 − 34𝑥1,𝑘 +
10

3

Problem 9.30:

The initial conditions are 𝑦 0 = 𝑥1 0 = 0 and 𝑦 0 = 𝑥2 0 = 0. Let

∆𝑡 = 0.01 seconds.

For 𝑘 = 1:

𝑥1 2 = 𝑥1 1 + ∆𝑡 ∙ 𝑥2 1 = 0.0 + 0.01 0.0 = 0.0

𝑥2(2) = 𝑥2(1) + ∆𝑡 −6𝑥2(1) − 34𝑥1(1) + 10/3

𝑥2(2) = 0.0 + 0.01 − 6 0.0 − 34 0.0 + 10/3 = 0.0 3

For 𝑘 = 2:

𝑥1 3 = 𝑥1 2 + ∆𝑡 ∙ 𝑥2 2 = 0.0 + 0.01 0.0 3 = 0.000 3

𝑥2(3) = 𝑥2(2) + ∆𝑡 −6𝑥2(2) − 34𝑥1(2) + 10/3

𝑥2(3) = 0.0 3 + 0.01 − 6 0.0 3 − 34 0.0 + 10/3 = 0.064 6

Problem 9.30:

