## Chapter 9c: Numerical Methods for Calculus and Differential Equations

- Higher-Order Differential Equations
- Cauchy/State-Variable Form
- Euler Method
- MATLAB ODE Solver ode45
- ode45 with Matrix Method
- Matrix Methods for Linear Equations
- Control System Toolbox


## Higher-Order Differential Equations

The methods used to solve first-order differential equations can be used to solve higher-order ordinary differential equations. Consider a Spring-Mass-Damper system:


## Higher-Order Differential Equations

The mass is $m$, the spring constant is $k$, and the damping coefficient is $c$. Newton's Second Law for this system is:

$$
m \ddot{y}+c \dot{y}+k y=0
$$

where the first derivative of position with respect to time is $\dot{y}=\frac{d y}{d t}$ and the second derivative is $\ddot{y}=\frac{d^{2} y}{d t^{2}}$

Solve this equation by turning it into a system of two first-order differential equations. First, solve the equation for the second derivative:

$$
\ddot{y}=-\frac{c}{m} \dot{y}-\frac{k}{m} y
$$

## Cauchy/State-Variable Form

Let $x_{1}=y$ (Position) and $x_{2}=\dot{y}$ (Velocity). Taking the derivative of the first equation gives:

$$
\dot{x}_{1}=\dot{y}=x_{2} \quad \text { or } \quad \dot{x}_{1}=x_{2}
$$

Taking the derivative of the second equation gives:

$$
\dot{x}_{2}=\ddot{y}=-\frac{c}{m} \dot{y}-\frac{k}{m} y \quad \text { or } \quad \dot{x}_{2}=-\frac{c}{m} x_{2}-\frac{k}{m} x_{1}
$$

This is called the Cauchy Form or the State-Variable Form:

$$
\begin{gathered}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-\frac{c}{m} x_{2}-\frac{k}{m} x_{1}
\end{gathered}
$$

## Euler Method

Now use the Euler Method to discretize the system of equations as follows:

$$
\begin{gathered}
x_{1, k+1}=x_{1, k}+\Delta t \cdot x_{2, k} \\
x_{2, k+1}=x_{2, k}+\Delta t \cdot\left(-\frac{c}{m} x_{2, k}-\frac{k}{m} x_{1, k}\right)
\end{gathered}
$$

This system of equations is solved using the same Time-Stepping technique that was shown previously using the Euler Method.

## MATLAB ODE Solver ode45

Alternatively, use ode 45 to solve the system:
[t, x] $=$ ode $45($ (@xdot, tspan, x0)

Function File:


## MATLAB ODE Solver ode45

Script File:


## MATLAB ODE Solver ode45



## ode45 with Matrix Method

The general Spring-Mass-Damper problem, where $u(t)$ is a forcing function, can be solved by casting the equation in Matrix Form:

$$
\begin{gathered}
m \ddot{y}+c \dot{y}+k y=u(t) \\
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=\frac{1}{m} u(t)-\frac{c}{m} x_{2}-\frac{k}{m} x_{1} \\
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{c}{m}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
\frac{1}{m}
\end{array}\right] \cdot u(t)}
\end{gathered}
$$

## ode45 with Matrix Method

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{c}{m}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
\frac{1}{m}
\end{array}\right] \cdot u(t)
$$

## In Matrix Form:

$$
\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B} \cdot u(t)
$$

where

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{c}{m}
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{c}
0 \\
\frac{1}{m}
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

## ode45 with Matrix Method

Function File:


## ode45 with Matrix Method

Script File:


## ode45 with Matrix Method



## Matrix Methods for Linear Equations

Spring-Mass-Damper system in Reduced Form or Transfer Function Form:

$$
m \ddot{y}+c \dot{y}+k y=u(t)
$$

SMD in State-Variable or State-Space Form:

$$
\begin{gathered}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=\frac{1}{m} u(t)-\frac{c}{m} x_{2}-\frac{k}{m} x_{1} \\
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{c}{m}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
\frac{1}{m}
\end{array}\right] \cdot u(t)}
\end{gathered}
$$

## Matrix Methods for Linear Equations

 SMD in Matrix Form:$$
\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B} \cdot u(t)
$$

where

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{c}{m}
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{c}
0 \\
\frac{1}{m}
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

All three forms describe the same second-order differential equation. When the coefficients are constant, the above representation is called a Linear, Time-Invariant equation, or an LTI Object or LTI System.

## Matrix Methods for Linear Equations

$$
\begin{gathered}
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{B} \cdot u(t) \\
\mathbf{A}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{c}{m}
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{l}
0 \\
\frac{1}{m}
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{gathered}
$$

In this case, there are only two outputs: $x_{1}$ and $x_{2}$, which represent the position and the velocity of the mass $m$. The outputs are given in the following matrix:

$$
\mathbf{y}=\mathbf{C x}+\mathbf{D} \boldsymbol{u}(t)
$$

If the position of the mass is desired, $\mathbf{C}=[1,0]$. If the velocity is desired, $\mathbf{C}=[0,1]$. In all cases, $\mathbf{D}=0$.

## Control System Toolbox

The most general case for a second-order LTI System in Reduced Form is:

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=d \frac{d u}{d x}+e u
$$

This system can be input to MATLAB as follows:
sys $=t f(r i g h t, l e f t)$
where $t f$ stands for Transfer Function. The right- and left-hand coefficient vectors are:
right $=[d, e]$ and left $=[a, b, c]$

## Control System Toolbox

Alternatively, the LTI System can be input to MATLAB in State-Space Form directly:

$$
\begin{aligned}
& A=[0,1 ;-k / m,-C / m] \\
& B=[0 ; 1 / m] \\
& C=[1,0] \text { for position of mass } \\
& D=0 \\
& \text { Sys }=\operatorname{ss}(A, B, C, D)
\end{aligned}
$$

|  | Function | Required Form | Initial Conditions |
| :--- | :--- | :--- | :--- |
| initial (sys,x0) | Free Response (Undriven) | State | Default Zero or Input |
| impulse(sys) | Impulse Response | Transfer or State | Zero |
| step (sys) | Unit-Step | Transfer or State | Zero |
| lsim(sys,u,t,x0) | Arbitrary Input Response | Transfer or State | Default Zero or Input |

## Initial-Condition Response

initial (sys, x0) gives the Undriven Response of the system of equations, where $u(t)=0$, subject to a set of initial conditions:

$$
\begin{aligned}
2 \ddot{y}+3 \dot{y}+5 y & =u(t), \quad y(0)=10, \quad \dot{y}(0)=5 \\
\mathbf{A} & =\left[\begin{array}{cc}
0 & 1 \\
-\frac{5}{2} & -\frac{3}{2}
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{l}
0 \\
\frac{1}{2}
\end{array}\right]
\end{aligned}
$$

The system must be cast into State-Variable or State-Space (ss) form.

## Initial-Condition Response

Response to Initial Conditions

$$
\begin{aligned}
& \mathrm{A}=[01 ;-5 / 2-3 / 2] ; \\
& \mathrm{B}=[0 ; 1 / 2] ; \\
& \mathrm{C}=[10] ; \\
& \mathrm{D}=0 ; \\
& \text { sys_ss = ss(A, B B C C D); } \\
& \text { (O = [10 5]; } \\
& \text { initial(sys_ss, x0) }
\end{aligned}
$$



## Impulse Response

```
impulse(sys)
``` gives the response of the system of equations to an Impulse Function, where the initial conditions are set to zero.


Impulse Function:
\[
u(t)=\frac{1}{a \sqrt{\pi}} e^{-x^{2} / a^{2}} \quad \text { as } a \rightarrow 0
\]

\section*{Impulse Response}
\[
\begin{aligned}
& A=[01 ;-5 / 2-3 / 2] ; \\
& B=[0 ; 1 / 2] ; \\
& C=[10] ; \\
& D=0 ; \\
& \text { sys_ss = ss(A,B,C,D); } \\
& \text { impulse(sys_ss) }
\end{aligned}
\]


\section*{Unit-Step Response}
step(sys) gives the response of the system of equations to a Unit-Step Function, where the initial conditions are set to zero.


Unit-Step Function:
\[
u(t)=\left[\begin{array}{ll}
0, & t<0 \\
1, & t \geq 0
\end{array}\right.
\]

\section*{Unit-Step Response}
\[
\begin{aligned}
& \mathrm{A}=[01 ;-5 / 2-3 / 2] ; \\
& \mathrm{B}=[0 ; 1 / 2] ; \\
& \mathrm{C}=[10] ; \\
& \mathrm{D}=0 ; \\
& \text { sys_ss = ss (A,B,C,D); } \\
& \text { step(sys_ss) }
\end{aligned}
\]

Step Response


\section*{Unit-Step Response}


\section*{Unit-Step Response}


\section*{Unit-Step Response}


\section*{Unit-Step Response}


\section*{Signal Generator: Sine Wave}
[u,t] = gensig('sin',5,30,0.01)
plot(t, u, 'LineWidth',2) xlabel('t'), ylabel('u(t)') axis([0 30 -1.2 1.2]) grid on
title('Sine Wave')


\section*{Signal Generator: Square Wave}
[ \(u, t\) ] = gensig('square', \(5,30,0.01\) )
plot(t, u, 'LineWidth',2) xlabel('t'), ylabel('u(t)') axis([0 \(30-1.21 .2])\) grid on title('Square Wave')


\section*{Signal Generator: Pulse Wave}
[u,t] = gensig(pulse',5,30,0.01)
plot(t, u, 'LineWidth',2) xlabel('t'), ylabel('u(t)') axis([0 30-1.2 1.2]) grid on title('Pulse Wave')


\section*{Arbitrary Input Response}
lsim(sys, u,t) gives the response of the system of equations to an Arbitrary Input Function, where the initial conditions are set to zero.
\[
\begin{aligned}
& \text { A = [0 1; -5/2 -3/2]; } \\
& \text { B = [0; 1/2]; } \\
& C=[10] ; \\
& D=0 ; \\
& \text { sys_ss = ss(A,B,C,D); } \\
& \text { [u,t] = gensig('sin',5,30,0.01); } \\
& {[y, t]=\text { Isim(sys_ss, u,t); }} \\
& \operatorname{plot}(t, u, t, y), \text { xlabel('t') }
\end{aligned}
\]

Sine Wave Response


\section*{Problem 9.30:}
30. The following equation describes the motion of a certain mass connected to a spring, with viscous friction on the surface
\[
3 \ddot{y}+18 \dot{y}+102 y=f(t)
\]
where \(f(t)\) is an applied force. Suppose that \(f(t)=0\) for \(t<0\) and \(f(t)=\) 10 for \(t \geq 0\).
a. Plot \(y(t)\) for \(y(0)=\dot{y}(0)=0\).
b. Plot \(y(t)\) for \(y(0)=0\) and \(\dot{y}(0)=10\). Discuss the effect of the nonzero initial velocity.
Solve using the Euler Method. This is a second-order ordinary differential equation. Rewrite the equation by solving for the second derivative.
\[
\ddot{y}=-\frac{18}{3} \dot{y}-\frac{102}{3} y+\frac{10}{3}=-6 \dot{y}-34 y+\frac{10}{3}
\]

\section*{Problem 9.30:}

Let \(x_{1}=y\) and \(x_{2}=\dot{y}\). Taking the derivative of the first equation gives
\[
\dot{x_{1}}=\dot{y}=x_{2} \quad \text { or } \quad \dot{x_{1}}=x_{2}
\]

Taking the derivative of the second equation gives
\[
\dot{x}_{2}=\ddot{y}=-6 \dot{y}-34 y+\frac{10}{3}=-6 x_{2}-34 x_{1}+\frac{10}{3}
\]
or
\[
\dot{x}_{2}=-6 x_{2}-34 x_{1}+\frac{10}{3}
\]

The original second-order ordinary differential equation is now converted into two first-order ordinary differential equations that are coupled.
\[
\dot{x_{1}}=x_{2}, \quad \dot{x}_{2}=-6 x_{2}-34 x_{1}+\frac{10}{3}, \quad x_{1}(0)=0, \quad x_{2}(0)=0
\]

The system of equations can be discretized as follows:
\[
\begin{gathered}
x_{1, k+1}=x_{1, k}+\Delta t \cdot x_{2, k} \\
x_{2, k+1}=x_{2, k}+\Delta t \cdot\left(-6 x_{2, k}-34 x_{1, k}+\frac{10}{3}\right)
\end{gathered}
\]

\section*{Problem 9.30:}

The initial conditions are \(y(0)=x_{1}(0)=0\) and \(\dot{y}(0)=x_{2}(0)=0\). Let \(\Delta t=0.01\) seconds.

For \(k=1\) :
\[
\begin{gathered}
x_{1}(2)=x_{1}(1)+\Delta t \cdot x_{2}(1)=(0.0)+(0.01)(0.0)=0.0 \\
x_{2}(2)=x_{2}(1)+\Delta t\left[-6 x_{2}(1)-34 x_{1}(1)+10 / 3\right] \\
x_{2}(2)=(0.0)+(0.01)[-(6)(0.0)-(34)(0.0)+10 / 3]=0.0 \overline{3}
\end{gathered}
\]

For \(k=2\) :
\[
\begin{gathered}
x_{1}(3)=x_{1}(2)+\Delta t \cdot x_{2}(2)=(0.0)+(0.01)(0.0 \overline{3})=0.000 \overline{3} \\
x_{2}(3)=x_{2}(2)+\Delta t\left[-6 x_{2}(2)-34 x_{1}(2)+10 / 3\right] \\
x_{2}(3)=(0.0 \overline{3})+(0.01)[-(6)(0.0 \overline{3})-(34)(0.0)+10 / 3]=0.064 \overline{6}
\end{gathered}
\]

\section*{Problem 9.30:}

Problem 9.30: Scott Thomas
```

