Problem 10.13:

13. If a mass-spring system has Coulomb friction on the surface rather than viscous friction, its equation of motion is

$$
m \ddot{y}= \begin{cases}-k y+f(t)-\mu m g & \text { if } \dot{y} \geq 0 \\ -k y+f(t)+\mu m g & \text { if } \dot{y}<0\end{cases}
$$

where μ is the coefficient of friction. Develop a Simulink model for the case where $m=1 \mathrm{~kg}, k=5 \mathrm{~N} / \mathrm{m}, \mu=0.4$, and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Run the simulation for two cases: (a) the applied force $f(t)$ is a step function with a magnitude of 10 N and (b) the applied force is sinusoidal: $f(t)=$ $10 \sin 2.5 t$. Either the Sign block in the Math Operations library or the Coulomb and Viscous Friction block in the Discontinuities library can be used, but since there is no viscous friction in this problem, the Sign block is easier to use.

Operation of Sign Block: +1 for Input >= 0; -1 for Input < 0

Error for $\mathrm{t}>1.4 \mathrm{sec}$:
(i) Simulation Diagnostics: problem10_13 \square
View Font Size

Message	Source	Reported By	Summary
Model error	problem10_13	Simulink	At time 1.4049629452795942, simula...

problem 10_13
At time 1.4049629452795942 , simulation hits (1000) consecutive zero crossings. Consecutive zero crossings will slow down the simulation or cause the simulation to hang. To continue the simulation, you may 1) Try using Adaptive zero-crossing detection algorithm or 2) Disable the zero crossing of the blocks shown in the following table.

Number of consecutive zero-crossings : 1000
Zero-crossing signal name: Input
Block type : Signum
Block path : 'problem 10 13/Sian'

Scope2

\square	回	\times

