20. Use Transfer Function blocks to construct a Simulink model to plot the solution of the following equations for $0 \leq t \leq 2$

$$
\begin{aligned}
3 \ddot{x}+15 \dot{x}+18 x=f(t) & x(0)=\dot{x}(0)=0 \\
2 \ddot{y}+16 \dot{y}+50 y=x(t) & y(0)=\dot{y}(0)=0
\end{aligned}
$$

where $f(t)=50 u_{s}(t)$. At the output of the first block there is a dead zone for $-1 \leq x \leq 1$. This limits the input to the second block.

Figure 10.5-1 A dead-zone nonlinearity

Plot of $x(t)$:

Plot of $x(t)$ after the Dead Zone block:

Plot of $y(t)$:

Plot of $x(t)$ and $y(t)$:

