28. A cone-shaped paper drinking cup (like the kind used at water fountains) has a radius $R$ and a height $H$. If the water height in the cup is $h$, the water volume is given by

$$
V=\frac{1}{3} \pi\left(\frac{R}{H}\right)^{2} h^{3}
$$

Suppose that the cup's dimensions are $R=1.5 \mathrm{in}$. and $H=4 \mathrm{in}$.
a. If the flow rate from the fountain into the cup is $2 \mathrm{in} .^{3} / \mathrm{sec}$, use Simulink to determine how long will it take to fill the cup to the brim.
$b$. If the flow rate from the fountain into the cup is given by $2\left(1-e^{-2 t}\right)$ in. ${ }^{3} / \mathrm{sec}$, use Simulink to determine how long will it take to fill the cup to the brim.

$$
V=\frac{\pi}{3}\left(\frac{R}{H}\right)^{2} h^{3}
$$

Take the derivative of both sides of the equation with respect to $t$ :

$$
\begin{gathered}
\frac{d V}{d t}=\frac{\pi}{3}\left(\frac{R}{H}\right)^{2} 3 h^{2} \frac{d h}{d t} \\
\dot{h}=\frac{1}{\pi}\left(\frac{H}{R}\right)^{2} \frac{\dot{V}}{h^{2}}
\end{gathered}
$$




| Scope | $\square$ 易 |
| :---: | :---: |
|  |  |



Time offset: 0



