ME 1020 Engineering Programming with MATLAB

Problem 1.12:
12. The ideal gas law relates the pressure P, volume V, absolute temperature T, and amount of gas n. The law is

$$
P=\frac{n R T}{V}
$$

where R is the gas constant.
An engineer must design a large natural gas storage tank to be expandable to maintain the pressure constant at 2.2 atm . In December when the temperature is $4^{\circ} \mathrm{F}\left(-15^{\circ} \mathrm{C}\right)$, the volume of gas in the tank is $28500 \mathrm{ft}^{3}$. What will the volume of the same quantity of gas be in July when the temperature is $88^{\circ} \mathrm{F}\left(31^{\circ} \mathrm{C}\right)$? (Hint: Use the fact that n, R, and P are constant in this problem. Note also that $\mathrm{K}={ }^{\circ} \mathrm{C}+273.2$.)

Problem Setup:

$$
\begin{gathered}
P=\frac{n R T}{V} \\
n, R, P=\text { Constant } \\
\frac{T}{V}=\frac{P}{n R}=\text { Constant } \\
\frac{T_{1}}{V_{1}}=\frac{T_{2}}{V_{2}} \\
\frac{T_{\text {Dec }}}{V_{\text {Dec }}}=\frac{T_{\text {July }}}{V_{\text {July }}} \\
V_{\text {July }}=V_{\text {Dec }}\left(\frac{T_{\text {July }}}{T_{\text {Dec }}}\right)
\end{gathered}
$$

```
%Prob. 1-12: Scott Thomas
clear
clc
disp('Prob7em 1.12: Scott Thomas')
v_dec=28500
t_dec=-15+273
t_ju7y=31+273
v_ju7y=v_dec*t_ju7y/t_dec
```

t_ju7y =
$3.3581 \mathrm{e}+04$

