ME 1020 Engineering Programming with MATLAB

Problem 2.18:

18. The potential energy stored in a spring is $kx^2/2$, where k is the spring constant and x is the compression in the spring. The force required to compress the spring is kx. The following table gives the data for five springs:

	Spring				
	1	2	3	4	5
Force (N)	11	7	8	10	9
Spring constant k (N/m)	1000	600	900	1300	700

Use MATLAB to find (a) the compression x in each spring and (b) the potential energy stored in each spring.

```
% Problem 2.18
clear
clc
disp('Problem 2.18: Scott Thomas')
disp('Force:')
f = [11 7 8 10 9]
disp('Spring Constant:')
k = [1000 600 900 1300 700]
disp('Part (a): find compression x in each spring')
x = f./k
% Part (b)
disp('Part (b): potential energy stored in each spring')
pe = (k.*x.^2)/2
Problem 2.18: Scott Thomas
Force:
f =
   11 7 8 10 9
Spring Constant:
k =
       1000
                    600
                                          1300
                                900
                                                        700
Part (a): find compression x in each spring
```

0.0110 0.0117 0.0089 0.0077 0.0129

Part (b): potential energy stored in each spring

pe =