ME 1020 Engineering Programming with MATLAB

Problem 3.7:
7.* When a belt is wrapped around a cylinder, the relation between the belt forces on each side of the cylinder is

$$
F_{1}=F_{2} e^{\mu \beta}
$$

where β is the angle of wrap of the belt and μ is the friction coefficient. Write a script file that first prompts a user to specify β, μ, and F_{2} and then computes the force F_{1}. Test your program with the values $\beta=130^{\circ}$, $\mu=0.3$, and $F_{2}=100$ N. (Hint: Be careful with β !)

The hint indicates that beta must be in radians!
Search for the input command:

input

Request user input
Syntax
evalResponse $=$ input (prompt)
strResponse $=$ input(prompt, 's')

Description

 evaluate expressions, the input function accesses variables in the current workspace.
strResponse $=$ input (prompt, ' s^{\prime} ') returns the entered text as a MATLAB string, without evaluating expressions.

Examples

Request a text response. Assign a default value ('Y') by checking for an empty matrix.
reply = input('Do you want more? Y/N [Y]: ', 's');
if isempty (reply)
reply = 'Y';
end

```
1 % Problem 3.7
    2 - clear
    3- clc
    4- disp('Problem 3.7: Scott Thomas')
    5
    6-
    7-
    8- Beta_degrees = input('Beta (degrees) = ')
    9 - Beta_radians = Beta_degrees*pi/180
    F1 = F2*exp (Mu*Beta_radians)
    % Generate a plot
    beta degrees = 1:179;
    beta_radians = beta_degrees*pi/180;
    F1plot = F2*exp(Mu*beta_radians);
    plot(beta_degrees,F1plot),xlabel('Beta (degrees)'),ylabel('F1 (N)')
```

 Problem 3.7: Scott Thomas
 \(\mathrm{F} 2=100\)
 F2 \(=\)
 100
 \(M u=.3\)
 \(\mathrm{Mu}=\)
 0.3000
 Beta \((\) degrees \()=130\)
 Beta_degrees \(=\)
 130
 |
Beta_radians =
2.2689
F1 $=$
197.5217
$f_{\underline{v}} \gg \mid$

