ME 1020 Engineering Programming with MATLAB

Problem 4.25:
25. We want to analyze the mass-spring system discussed in Problem 20 for the case in which the weight W is dropped onto the platform attached to the center spring. If the weight is dropped from a height h above the platform, we can find the maximum spring compression x by equating the weight's gravitational potential energy $W(h+x)$ with the potential energy stored in the springs. Thus

$$
W(h+x)=\frac{1}{2} k_{1} x^{2} \quad \text { if } x<d
$$

which can be solved for x as

$$
x=\frac{W \pm \sqrt{W^{2}+2 k_{1} W h}}{k_{1}} \quad \text { if } x<d
$$

and

$$
W(h+x)=\frac{1}{2} k_{1} x^{2}+\frac{1}{2}\left(2 k_{2}\right)(x-d)^{2} \quad \text { if } x \geq d
$$

which gives the following quadratic equation to solve for x :

$$
\left(k_{1}+2 k_{2}\right) x^{2}-\left(4 k_{2} d+2 W\right) x+2 k_{2} d^{2}-2 W h=0 \quad \text { if } x \geq d
$$

a. Create a function file that computes the maximum compression x due to the falling weight. The function's input parameters are k_{1}, k_{2}, d, W, and h. Test your function for the following two cases, using the values $k_{1}=10^{4} \mathrm{~N} / \mathrm{m} ; k_{2}=1.5 \times 10^{4} \mathrm{~N} / \mathrm{m}$; and $d=0.1 \mathrm{~m}$.

$$
\begin{array}{cc}
W=100 \mathrm{~N} & h=0.5 \mathrm{~m} \\
W=2000 \mathrm{~N} & h=0.5 \mathrm{~m}
\end{array}
$$

b. Use your function file to generate a plot of x versus h for $0 \leq h \leq 2 \mathrm{~m}$. Use $W=100 \mathrm{~N}$ and the preceding values for k_{1}, k_{2}, and d.
$\mathrm{W}=50 \mathrm{~N}$:

problem4_25.m x spring_deflection25.m* ${ }^{\text {a }}$	
1	\% Problem 4.25
2 -	clear
$3-$	cle
4 -	disp('Problem 4.25: Scott Thomas')
5 -	disp(' ')
6 -	W $=50$; \% ${ }^{\text {N }}$
7 -	$\mathrm{h}=0.5$; \%m
8	\% ${ }^{\text {N }}=1000$; \% Number of evaluated points
9	\%\% $=$ linspace ($0,3000, \mathrm{~N}$) ; \% N
$10-$	
11 -	$\mathrm{k}_{-}{ }^{2}=1.5 * 10^{\wedge} 4 ; 8 \mathrm{~N} / \mathrm{m}$
12 -	$\mathrm{d}^{-}=0.1$; $\mathrm{s}^{\text {m }}$ /
13	
14 -	$\mathrm{a}=\mathrm{k}_{-1}{ }^{\text {+ }}$ 2*k_2;
15 -	$\mathrm{b}=-\left(4 * \mathrm{k} 22^{*} \mathrm{~d}+2 * \mathrm{~W}\right)$;
16 -	$\mathrm{c}=2 * \mathrm{k} 2^{2 *} \mathrm{~d}^{\wedge} 2-2 * \mathrm{~W}^{*} \mathrm{~h}$;
17	
18 -	$\mathrm{p}=\left[\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right]$;
19 -	$\mathrm{q}=\operatorname{roots}(\mathrm{p})$;
20	
21 -	$\mathrm{x} 1=\left(\mathrm{W}+\operatorname{sqrt}\left(\mathrm{W}^{\wedge} 2+2 * \mathrm{k} \mathrm{l}^{1 *} \mathrm{~W}^{*} \mathrm{~h}\right) \mathrm{)} / \mathrm{k} \mathrm{c}^{1}\right.$
$22-$	$\mathrm{x} 2=\left(\mathrm{W}-\operatorname{sqrt}\left(\mathrm{W}^{\wedge} 2+2 * \mathrm{k} 1^{*} \mathrm{~W}^{*} \mathrm{~h}\right)\right.$)/k_1
23 -	$\mathrm{x} 3=\mathrm{q}(1)$
24 -	$\mathrm{x}^{4}=\mathrm{q}(2)$
25	
26	\% Determine if the second set of springs is hit
27 -	if $\mathrm{x} 1 \mathrm{l}=\mathrm{d}$
$28-$	disp('x1 >= d')
29 -	$\mathrm{x} 1=\mathrm{x} 3$
$30-$	$\mathrm{x} 2=\mathrm{x} 4$
$31-$	else
$32-$	disp('x1 < d')
$33-$	end
34	
35	\% Find the larger of the two deflections
$36-$	$\mathrm{x}=0$;
$37-$	if $\mathrm{x} 1 \mathrm{>}=\mathrm{x}$;
$38-$	$\mathrm{x}=\mathrm{x} 1$;
39 -	end
$40-$	if $\mathrm{x} 2 \mathrm{>}=\mathrm{x}$;
41 -	$\mathrm{x}=\mathrm{x} 2$;
42 -	end
$43-$	disp('Maximum Deflection (m): ')
44 -	\times
45	

```
Problem 4.25: Scott Thomas
x1 =
    0.0759
x2 =
    -0.0659
|
x3 =
    0.0763 + 0.0209i
x4 =
    0.0763 - 0.0209i
x1 < d
Maximum Deflection (m):
x =
    0.0759
fx
```

$W=2000 N$:
$\mathrm{x} 1=$
0.6899
$\mathrm{x} 2=$
-0.2899
$\mathrm{x} 3=$
0.3661
$\mathrm{x} 4=$
-0.1161
$\mathrm{x} 1>=\mathrm{d}$
$\mathrm{x} 1=$
0.3661
$\mathrm{x} 2=$
-0.1161

Maximum Deflection (m):
$\mathrm{x}=$
$f_{\underset{\sim}{x}} \quad 0.3661$

\because probl	m4_25.m* spring_deflection25.m x
1	\% Problem 4.25: Function File \square function $[\mathrm{x}]=$ spring_deflection25(W, k_1,k_2,d,h)
2	
3	
4 -	$\mathrm{a}=\mathrm{k}_{-} 1+2 * \mathrm{k}_{-} 2$;
5 -	$\mathrm{b}=-\left(4 * \mathrm{k} 2^{*} \mathrm{~d}+2 * W\right)$;
6 -	$c=2 * k{ }^{*}{ }^{*} \mathrm{~d}^{\wedge} 2-2 * W * h$;
7 -	$\mathrm{p}=\left[\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right]$;
8 -	$\mathrm{q}=\operatorname{roots}(\mathrm{p})$;
9	
$10-$	$\mathrm{x} 1=\left(\mathrm{W}+\operatorname{sqrt}\left(\mathrm{W}^{\wedge} 2+2{ }^{*} \mathrm{k} _1 * \mathrm{~W} * \mathrm{~h}\right) \mathrm{)} / \mathrm{k} _1 ;\right.$
11 -	$\mathrm{x} 2=\left(\mathrm{W}-\operatorname{sqrt}\left(\mathrm{W}^{\wedge} 2+2 * \mathrm{k} \mathrm{l}^{*} \mathrm{~W}^{*} \mathrm{~h}\right) \mathrm{)} / \mathrm{k}\right.$ _1;
12 -	$\mathrm{x} 3=\mathrm{q}(1)$;
13 -	$\mathrm{x} 4=\mathrm{q}(2)$;
14	
15	\% Determine if the second set of springs is hit
16 -	if $\mathrm{x} 1 \mathrm{l}=\mathrm{d}$
17	\% disp('x1 >= d')
18 -	$\mathrm{x} 1=\mathrm{x} 3$;
19 -	$\mathrm{x} 2=\mathrm{x} 4$;
$20-$	end
21	
22	\% Find the larger of the two deflections
23 -	$\mathrm{x}=0$;
24 -	if $\mathrm{x} 1 \mathrm{>}=\mathrm{x}$;
25 -	$\mathrm{x}=\mathrm{x} 1 ;$
26 -	end
27 -	if $\mathrm{x} 2 \mathrm{l}=\mathrm{x}$;
$28-$	$\mathrm{x}=\mathrm{x} 2$;
29 -	- end
30	

