ME 1020 Engineering Programming with MATLAB

Problem 6.11:

11.* The number of twists y required to break a certain rod is a function of the percentage x_1 and x_2 of each of two alloying elements present in the rod. The following table gives some pertinent data. Use linear multiple regression to obtain a model $y = a_0 + a_1x_1 + a_2x_2$ of the relationship between the number of twists and the alloy percentages. In addition, find the maximum percent error in the predictions.

Number of twists y		Percentage of element 1 x ₁	Percentage of element 2 x2
	40	1	1
	51	2	cila kan lid i la sa i
	65	3	Tallian and Important
	72	4	1
	38	1	2
	46	2	2
	53	3	2
	67	4	2
	31	1 - 1 - 1	3
	39	2	3
	48	3	3
	56	4	3

```
% Problem 6.11
clear
clc
disp('Problem 6.11: Scott Thomas')

format shortEng

x1 = [1 2 3 4 1 2 3 4 1 2 3 4]';
x2 = [1 1 1 1 2 2 2 2 2 3 3 3 3]';
y = [40 51 65 72 38 46 53 67 31 39 48 56]';

x = [ones(size(x1)), x1, x2];
a = x\y
yp = X*a;
Max_Percent_Error = 100*max(abs((yp - y)./y))
```

```
Problem 6.11: Scott Thomas
a =
     40.0000e+000
     9.6000e+000
     -6.7500e+000

Max_Percent_Error =
     7.1250e+000
```