ME 1020 Engineering Programming with MATLAB

Problem 6.15:
15. The solubility of oxygen in water is a function of the water temperature.

Let S represent the solubility of O_{2} as millimoles of O_{2} per liter of water. Let T be temperature in ${ }^{\circ} \mathrm{C}$. Use the following data to obtain a curve fit for S as a function of T. Use the fit to estimate S when $T=8^{\circ} \mathrm{C}$ and $T=50^{\circ} \mathrm{C}$.

$\boldsymbol{T}\left({ }^{\circ} \mathbf{C}\right)$	$\boldsymbol{S}\left(\mathrm{mmol}_{\mathbf{~ O}}^{\mathbf{2}} / \mathrm{L} \mathrm{H}_{\mathbf{2}} \mathrm{O}\right)$
5	1.95
10	1.7
15	1.55
20	1.40
25	1.30
30	1.15
35	1.05
40	1.00
45	0.95

```
% Problem 6.15
clear
clc
disp('Problem 6.15: Scott Thomas')
format shortEng
temperature = 5:5:45;
temperatureplot = 5:1:45;
solubility = [1.95 1.7 1.55 1.4 1.3 1.15 1.05 1 0.95];% torr
p1 = polyfit(temperature,solubility,1);
solubilityfit1 = p1(1)*temperatureplot + p1(2);
p2 = polyfit(temperature,solubility,2);
solubilityfit2 = p2(1)*temperatureplot.^2 + p2(2)*temperatureplot + p2(3);
p3 = polyfit(temperature,solubility,3)
solubilityfit3 = p3(1)*temperatureplot.^3 + p3(2)*temperatureplot.^2 + p3(3)*temperatureplot + p3(4);
solubility8 = p3(1)*8^3 + p3(2)*8^2 + p3(3)*8 + p3(4)
solubility50 = p3(1)*50^3 + p3(2)*50^2 + p3(3)*50 + p3(4)
*plot(temperature,solubility, 'o', temperatureplot, solubilityfit1)
%plot(temperature,solubility, 'o', temperatureplot, solubilityfit2)
plot(temperature,solubility, '○', temperatureplot, solubilityfit3)
%loglog(temperature,solubility, '0')%, temperatureplot, solubilityfit1)
%semilogy(temperature,solubility, 'o')%, temperatureplot, solubilityfit1)
splot(temperature,solubility, 'o', temperatureplot, solubilityfit2)
xlabel('Temperature T (deg C)'),
ylabel('Solubility S (mmol O_2/L H_20)'),
title('Problem 6.15: Scott Thomas')
%text(7,0.9, 'S = -0.0245*T + 1.9514');
%text(7,0.9, 'S = 430.7359e-006*T^2 - 46.0368e-003*T + 2.1488');
text(7,0.9, 'S = -2.3569e-006*T^3 + 607.5036e-006*T^2 - 49.7607e-003*T + 2.1683');
%text(7, 0.9, 'Rectilinear Scales')
%text(1.2, 1, 'Log-Log Scales')
%text(7, 1, 'Semi-Log y Scales')
```


Problem 6.15: Scott Thomas
p3 $=$
$-2.3569 e-006 \quad 607.5036 e-006 \quad-49.7607 e-003 \quad 2.1683 e+000$
solubility8 =
$1.8078 \mathrm{e}+000$
solubility50 =
$904.3651 \mathrm{e}-003$
$f_{x} \gg$

