ME 1020 Engineering Programming with MATLAB

Problem 9.10:

10.* A rocket's mass decreases as it burns fuel. The equation of motion for a rocket in vertical flight can be obtained from Newton's law, and it is

$$m(t)\frac{dv}{dt} = T - m(t)g$$

where T is the rocket's thrust and its mass as a function of time is given by $m(t) = m_0(1 - rt/b)$. The rocket's initial mass is m_0 , the burn time is b, and r is the fraction of the total mass accounted for by the fuel.

Use the values T = 48,000 N, $m_0 = 2200 \text{ kg}$, r = 0.8, $g = 9.81 \text{ m/s}^2$, and b = 40 s. Determine the rocket's velocity at burnout.

Problem setup:

$$F = ma$$

$$T - mg = ma$$

$$a(t) = \frac{T}{m(t)} - g$$

$$a(t) = \frac{T}{\left[m_0 \left(1 - \frac{rt}{b}\right)\right]} - g$$

Integrate the acceleration to find the velocity.

$$v(t) = \int_0^b a(t)dt + v(0) = \int_0^b \left\{ \frac{T}{\left[m_0 \left(1 - \frac{rt}{b}\right)\right]} - g \right\} dt + v(0)$$

The initial velocity for this problem is v(0) = 0. Use the Substitution Method to integrate the acceleration.

Let
$$w = m_0 \left(1 - \frac{rt}{b} \right)$$
, $dw = -\left(\frac{m_0 r}{b} \right) dt$, $dt = -\left(\frac{b}{m_0 r} \right) dw$
Limits: @ $t = 0$, $w = m_0$; @ $t = b$, $w = m_0 (1 - r)$

$$v = \int_{m_0}^{m_0 (1 - r)} \left(\frac{T}{w} - g \right) \left[-\left(\frac{b}{m_0 r} \right) dw \right]$$

$$v = -\left(\frac{b}{m_0 r} \right) \int_{m_0}^{m_0 (1 - r)} \left(\frac{T}{w} - g \right) dw$$

$$v = -\left(\frac{b}{m_0 r} \right) (T \ln w - gw)|_{m_0}^{m_0 (1 - r)}$$

$$v = -\left(\frac{b}{m_0 r}\right) \left\{ \left[T \ln\left(m_0 (1 - r)\right) - g\left(m_0 (1 - r)\right) \right] - \left[T \ln(m_0) - g(m_0) \right] \right\}$$

$$v = -\left(\frac{b}{m_0 r}\right) \left\{ T \ln\left[\frac{m_0 (1 - r)}{m_0}\right] - g[m_0 (1 - r) - m_0] \right\}$$

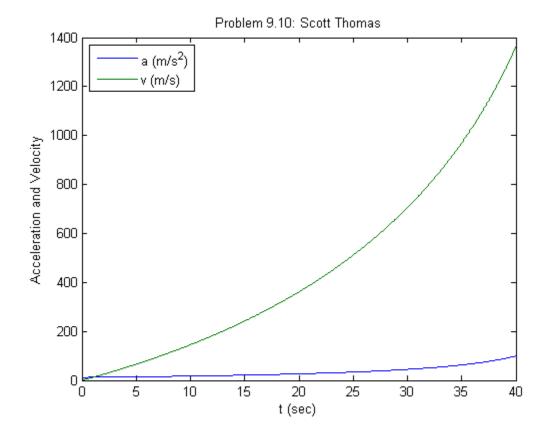
$$v = -\left(\frac{b}{m_0 r}\right) \left[T \ln(1 - r) + g m_0 r \right]$$

Evaluate the velocity at burnout:

$$v = -\left(\frac{(40)}{(2200)(0.8)}\right) [(48,000) \ln(1 - 0.8) + (9.81)(2200)(0.8)] = 1363.3 \text{ m/s}$$

```
% Problem 9.10
clear
clc
disp('Problem 9.10: Scott Thomas')
T = 48000; %N
m0 = 2200; %kg
r = 0.8;
g = 9.81; \%m/s^2
b = 40; %sec
% Create an anonymous function for a(t) = T/(m0*(1 - (r*t/b))) - g
aoft = @(t) (T./(m0*(1 - (r*t/b))) - q);
t = linspace(0,b,N);
a = aoft(t);
v(1) = 0.0;
for k = 1:N-1
v(k+1) = v(k) + 0.5*(t(k+1) - t(k))*(a(k) + a(k+1));
disp('Acceleration at burnout = ')
a(N)
disp('Velocity at burnout = ')
V(N)
plot(t,a, t,v), xlabel('t (sec)')
ylabel('Acceleration and Velocity')
title('Problem 9.10: Scott Thomas')
legend('a (m/s^2)', 'v (m/s)', 'Location', 'Northwest')
Problem 9.10: Scott Thomas
Acceleration at burnout =
ans =
```

```
Acceleration at burnout =


ans =

9.9281e+01

Velocity at burnout =

ans =

1.3634e+03
```

