ME 1020 Engineering Programming with MATLAB

Problem 9.32:

32. The following equation describes the motion of a certain mass connected to a spring, with no friction

$$
3 \ddot{y}+75 y=f(t)
$$

where $f(t)$ is an applied force. Suppose the applied force is sinusoidal with a frequency of $\omega \mathrm{rad} / \mathrm{s}$ and an amplitude of $10 \mathrm{~N}: f(t)=10 \sin (\omega t)$.
Suppose that the initial conditions are $y(0)=\dot{y}(0)=0$. Plot $y(t)$ for $0 \leq$ $t \leq 20 \mathrm{~s}$. Do this for the following three cases. Compare the results of each case.
a. $\omega=1 \mathrm{rad} / \mathrm{s}$
b. $\omega=5 \mathrm{rad} / \mathrm{s}$
c. $\omega=10 \mathrm{rad} / \mathrm{s}$

This is a second-order ordinary differential equation. Rewrite the equation by solving for the second derivative.

$$
\begin{gathered}
\ddot{y}=-\frac{75}{3} y+\frac{10}{3} \sin (\omega t)=-25 y+\frac{10}{3} \sin (\omega t) \\
\text { Let } x_{1}=y \text { and } x_{2}=\dot{y}
\end{gathered}
$$

Taking the derivative of the first equation gives

$$
\dot{x}_{1}=\dot{y}=x_{2} \quad \text { or } \quad \dot{x}_{1}=x_{2}
$$

Taking the derivative of the second equation gives

$$
\dot{x}_{2}=\ddot{y}=-25 x_{1}+\frac{10}{3} \sin (\omega t)
$$

The original second order ordinary differential equation is now converted into two first order ordinary differential equations that are coupled.

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-25 x_{1}+\frac{10}{3} \sin (\omega t), \quad x_{1}(0)=0, \quad x_{2}(0)=0
$$

Use the Euler method for this problem. The system of equations can be discretized as follows:

$$
\begin{gathered}
x_{1, k+1}=x_{1, k}+\Delta t \cdot x_{2, k} \\
x_{2, k+1}=x_{2, k}+\Delta t\left[-25 x_{1, k}+\frac{10}{3} \sin \left(\omega t_{k}\right)\right]
\end{gathered}
$$

In the problem statement, the initial conditions are $y(0)=x_{1}(0)=0$ and $\dot{y}(0)=x_{2}(0)=0$. Let $\Delta t=$ 0.1 and $\omega=1 \mathrm{rad} / \mathrm{sec}$.

For $k=1$:

$$
\begin{gathered}
x_{1,2}=x_{1,1}+\Delta t \cdot x_{2,1}=(0.0)+(0.1)(0.0)=0.0 \\
x_{2,2}=x_{2,1}+\Delta t\left[-25 x_{1,1}+\frac{10}{3} \sin \left(\omega t_{1}\right)\right] \\
x_{2,2}=(0.0)+(0.1)\left[-(25)(0.0)+\frac{10}{3} \sin [(1.0)(0.0)]\right]=0.0 \\
t_{2}=t_{1}+\Delta t=0.0+0.1=0.1
\end{gathered}
$$

For $k=2$:

$$
\begin{gathered}
x_{1,3}=x_{1,2}+\Delta t \cdot x_{2,2}=(0.0)+(0.1)(0.0)=0.0 \\
x_{2,3}=x_{2,2}+\Delta t\left[-25 x_{1,2}+\frac{10}{3} \sin \left(\omega t_{2}\right)\right] \\
x_{2,3}=(0.0)+(0.1)\left[-(25)(0.0)+\frac{10}{3} \sin [(1.0)(0.1)]\right]=0.0332778 \\
t_{3}=t_{2}+\Delta t=0.1+0.1=0.2
\end{gathered}
$$

For $k=3$:

$$
\begin{gathered}
x_{1,4}=x_{1,3}+\Delta t \cdot x_{2,3}=(0.0)+(0.1)(0.0332778)=0.00332778 \\
x_{2,4}=x_{2,3}+\Delta t\left[-25 x_{1,3}+\frac{10}{3} \sin \left(\omega t_{3}\right)\right] \\
x_{2,4}=(0.0332778)+(0.1)\left[-(25)(0.0)+\frac{10}{3} \sin [(1.0)(0.2)]\right]=0.0995009 \\
t_{4}=t_{3}+\Delta t=0.2+0.1=0.3
\end{gathered}
$$

[^0]```
% Problem 9.32
clear
 clc
 disp('Problem 9.32: Scott Thomas')
 format short
 omegaa = 1.0;
 omegab = 5.0;
 omegac = 10.0;
 Na=200000;
 delta_ta = 0.0001;
 xla = zeros(1,Na);
 x2a = zeros(1,Na);
 ta = zeros(1,Na);
 x1a(1) = 0.0;
 x2a(1) = 0.0;
 for k = 1:Na
 x1a(k+1) = x1a(k) + x2a(k)*delta_ta;
 x2a(k+1) = x2a(k) + (-25*x1a(k) + 10/3*sin(omegaa*ta(k)))*delta_ta;
 ta(k+1)=ta(k) + delta_ta;
 end
 ta;
 x1a;
 x2a;
 Nb}=200000
 delta_tb = 0.0001;
 x1b = zeros (1,Nb);
 x2b = zeros (1,Nb);
 tb = zeros (1,Nb);
 x1b(1) = 0.0;
 x2b(1) = 0.0;
 for k = 1:Nb
 x1b(k+1) = x1b (k) + x2b(k)*delta_tb;
 x2b(k+1) = x2b(k) + (-25*x1b(k) + 10/3*sin(omegab*tb(k)))*delta_tb;
 tb}(k+1)=tb(k)+delta_tb
 end
 Nc = 200000;
 delta_tc = 0.0001;
 xlc = zeros(1,Nc);
 x2c = zeros(1,Nc);
 tc = zeros(1,Nc);
 x1c(1) = 0.0;
 x2c(1) = 0.0;
 for k = 1:Nc
 x1c(k+1)=x1c(k) + x2c(k)*delta_tc;
 x2c(k+1) = x2c(k) + (-25*x1c(k) + 10/3*sin(omegac*tc(k)))*delta_tc;
 tc(k+1) = tc (k) + delta_tc;
 end
 splot(ta, x1a)%, tb, x1b, tc, x1c)
 %plot(tb, x1b)%, tb, x1b, tc, x1c)
 plot(tc, x1c)%, tb, x1b, tc, x1c)
 xlabel('Time t'), ylabel('Function y(t)')
 title('Problem 9.32: Scott Thomas')
 %legend('Part a: \omega = 1.0 rad/sec', 'Location', 'South')
 slegend('Part b: \omega = 5.0 rad/sec', 'Location', 'South')
 legend('Part c: \omega = 10.0 rad/sec', 'Location', 'South')
```

This problem is very sensitive to time step size. The following plot is for $\Delta t=0.1$ second:

$\Delta t=0.01$ second:

$\Delta t=0.001$ second:

$\Delta t=0.0001$ second: This seems to be sufficient.




This behavior is called "Resonance".



[^0]:    Problem 9.32: Scott Thomas
    x1a $=$
    0
    0
    $0 \quad 0.0033$
    0.0133
    0.0322
    0.0609
    0.0974
    0.1376
    0.1748
    0.2016
    $\mathrm{x} 2 \mathrm{a}=$
    $\begin{array}{lllllllllll}0 & 0 & 0.0333 & 0.0995 & 0.1897 & 0.2863 & 0.3655 & 0.4015 & 0.3727 & 0.2679 & 0.0919\end{array}$
    $f_{\underset{\sim}{x}} \gg$

