Problem 9.33:

33. Van der Pol's equation has been used to describe many oscillatory processes. It is

$$
\ddot{y}-\mu\left(1-y^{2}\right) \dot{y}+y=0
$$

Plot $y(t)$ for $\mu=1$ and $0 \leq t \leq 20$, using the initial conditions $y(0)=5$, $\dot{y}(0)=0$.

This is a second-order ordinary differential equation. Rewrite the equation by solving for the second derivative.

$$
\begin{gathered}
\ddot{y}=\mu\left(1-y^{2}\right) \dot{y}-y \\
\text { Let } x_{1}=y \text { and } x_{2}=\dot{y}
\end{gathered}
$$

Taking the derivative of the first equation gives

$$
\dot{x}_{1}=\dot{y}=x_{2} \quad \text { or } \quad \dot{x}_{1}=x_{2}
$$

Taking the derivative of the second equation gives

$$
\dot{x}_{2}=\ddot{y}=\mu\left(1-y^{2}\right) \dot{y}-y=\mu\left(1-x_{1}^{2}\right) x_{2}-x_{1} \text { or } \dot{x}_{2}=\mu\left(1-x_{1}^{2}\right) x_{2}-x_{1}
$$

The initial conditions are

$$
y(0)=x_{1}(0)=5 \text { and } \dot{y}(0)=x_{2}=0
$$

The original second order ordinary differential equation is now converted into two first order ordinary differential equations that are coupled.

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=\mu\left(1-x_{1}^{2}\right) x_{2}-x_{1}, \quad x_{1}(0)=5, \quad x_{2}(0)=0
$$

Use the Euler method for this problem. The system of equations can be discretized as follows:

$$
\begin{gathered}
x_{1, k+1}=x_{1, k}+\Delta t \cdot x_{2, k} \\
x_{2, k+1}=x_{2, k}+\Delta t\left[\mu\left(1-x_{1, k}^{2}\right) x_{2, k}-x_{1, k}\right]=x_{2, k}+\Delta t \cdot g\left(x_{1, k}, x_{2, k}\right) \\
g\left(x_{1, k}, x_{2, k}\right)=\mu\left(1-x_{1, k}^{2}\right) x_{2, k}-x_{1, k}
\end{gathered}
$$

Let $\Delta t=0.001$ and $\mu=1.0$.
For $k=1$:

$$
\begin{gathered}
x_{1,1}=5.0, x_{2,1}=0.0 \\
x_{1,2}=x_{1,1}+\Delta t \cdot x_{2,1}=(5.0)+(0.001)(0.0)=5.0 \\
g\left(x_{1,1}, x_{2,1}\right)=\mu\left(1-x_{1,1}^{2}\right) x_{2,1}-x_{1,1}=(1.0)\left[1-(5.0)^{2}\right](0.0)-(5.0)=-5.0
\end{gathered}
$$

$$
\begin{gathered}
x_{2,2}=x_{2,1}+\Delta t\left[g\left(x_{1,1}, x_{2,1}\right)\right]=(0.0)+(0.001)[(-5.0)]=-0.005 \\
t_{2}=t_{1}+\Delta t=0.0+0.001=0.001
\end{gathered}
$$

For $k=2$:

$$
\begin{gathered}
x_{1,3}=x_{1,2}+\Delta t \cdot x_{2,2}=(5.0)+(0.001)(-0.005)=4.999995 \\
g\left(x_{1,2}, x_{2,2}\right)=\mu\left(1-x_{1,2}^{2}\right) x_{2,2}-x_{1,2}=(1.0)\left[1-(5.0)^{2}\right](-0.005)-(5.0)=-4.88 \\
x_{2,3}=x_{2,2}+\Delta t\left[g\left(x_{1,2}, x_{2,2}\right)\right]=(-0.005)+(0.001)[(-4.88)]=-0.00988 \\
t_{3}=t_{2}+\Delta t=0.001+0.001=0.002
\end{gathered}
$$

For $k=3$:

$$
\begin{gathered}
x_{1,4}=x_{1,3}+\Delta t \cdot x_{2,3}=(4.999995)+(0.001)(-0.00988)=4.999985 \\
g\left(x_{1,3}, x_{2,3}\right)=\mu\left(1-x_{1,3}^{2}\right) x_{2,3}-x_{1,3}=(1.0)\left[1-(4.999995)^{2}\right](-0.00988)-(4.999995)=-4.762875 \\
x_{2,4}=x_{2,3}+\Delta t\left[g\left(x_{1,1}, x_{2,1}\right)\right]=(-0.00988)+(0.001)[(-4.762875)]=-0.0146429 \\
t_{4}=t_{3}+\Delta t=0.002+0.001=0.003
\end{gathered}
$$

```
    % Problem 9.33
    clear
    clc
    disp('Problem 9.33: Scott Thomas')
    format long
    mu = 1.0;
    Na = 3;
    delta_ta = 0.001;
    xla = zeros(1,Na);
    x2a = zeros(1,Na);
    g = zeros(1,Na);
    ta = zeros(1,Na);
    xla(1) = 5.0;
    x2a(1) = 0.0;
for k = 1:Na
        x1a(k+1) = x1a(k) + x2a(k)*delta_ta;
        g(k) = mu*(1 - x1a(k)^2)*x2a(k) - x1a(k);
        x2a(k+1) = x2a(k) +g(k)*delta_ta;
        ta(k+1)= ta(k) + delta_ta;
    end
    ta
    x1a
    x2a
    plot(ta, xla)
    xlabel('Time t'), ylabel('Function y(t)')
    title('Problem 9.33: Scott Thomas')
    Problem 9.33: Scott Thomas
    ta =
        0 0.001000000000000 0.002000000000000 0.003000000000000
    x1a =
        5.000000000000000 5.000000000000000 4.999995000000000 4.999985120000000
    x2a =
    0 -0.005000000000000 -0.009880000000000 -0.014642875494000
fx}>>
```

Time step independence check: For $\Delta t=0.1$, the solution is unstable.

The time step should be decreased as the final time increases:


```
    % Problem 9.33
    clear
    clc
    disp('Problem 9.33: Scott Thomas')
    format long
    mu = 1.0;
    Na = 2000;
    delta_ta = 0.01;
    x1a = zeros(1,Na);
    x2a = zeros(1,Na);
    ga = zeros(1,Na);
    ta = zeros(1,Na);
    x1a(1) = 5.0;
    x2a(1) = 0.0;
    for k = 1:Na
        x1a(k+1) = x1a(k) + x2a(k)*delta_ta;
        ga(k) = mu*(1 - x1a(k)^2)*x2a(k) - x1a(k);
        x2a(k+1) = x2a(k) + ga(k)*delta_ta;
        ta(k+1) = ta(k) + delta_ta;
    end
    Nb = 20000;
    delta_tb = 0.001;
    x1b = zeros(1,Nb);
    x2b = zeros (1,Nb);
    gb = zeros(1,Nb);
    tb = zeros (1,Nb);
    x1b(1) = 5.0;
    x2b(1) = 0.0;
    for k = 1:Nb
        x1b(k+1) = x1b(k) + x2b(k)*delta_tb;
        gb (k) = mu*(1 - x1b (k)^2)*x2b(k) - x mb(k);
        x2b(k+1) = x2b(k) + gb (k)*delta_tb;
        tb}(k+1)=tb(k) + delta_tb
    end
    plot(ta, x1a, tb, x1b)
    xlabel('Time t'), ylabel('Function y(t)')
    title('Problem 9.33: Scott Thomas')
    legend('\Delta t = 0.01 seconds','\Delta t = 0.001 seconds','Location','NorthEast')
    axis([0 20 -3 5])
```

