ME 1020 Engineering Programming with MATLAB

Problem 9.8:
8. A cone-shaped paper drinking cup (like the kind supplied at water fountains) has a radius R and a height H. If the water height in the cup is h, the water volume is given by

$$
V=\frac{1}{3} \pi\left(\frac{R}{H}\right)^{2} h^{3}
$$

Suppose that the cup's dimensions are $R=1.5 \mathrm{in}$. and $H=4 \mathrm{in}$.
a. If the flow rate from the fountain into the cup is $2 \mathrm{in} .^{3} / \mathrm{s}$, how long will it take to fill the cup to the brim?
b. If the flow rate from the fountain into the cup is given by $2\left(1-e^{-2 t}\right)$ in. ${ }^{3} / \mathrm{s}$, how long will it take to fill the cup to the brim?

Problem setup:
Part a):

Volume within the cup as a function of time can be found by direct integration:

$$
V(t)=\int_{0}^{t} \dot{V} d t+V(0)
$$

where \dot{V} is the volumetric flow rate of water going into the cup, and $V(0)$ is the initial volume of water within the cup. For Part a), $\dot{V}=2.0 \mathrm{in}^{3} / \mathrm{s}$ and $V(0)=0$.

$$
V(t)=\int_{0}^{t} 2 d t=2 t
$$

The volume of water in the cup is related to the height of the water in the cup:

$$
V(t)=\frac{\pi}{3}\left(\frac{R}{H}\right)^{2} h^{3}
$$

The cup is full when $h=H=4.0$ inches:

$$
V=2 t=\frac{\pi}{3}\left(\frac{R}{H}\right)^{2} H^{3}
$$

$$
t=\frac{\pi}{6} R^{2} H=\frac{\pi}{6}(1.5)^{2}(4.0)=4.1724 \text { seconds }
$$

The height of water as a function of time is related to the volume of water in the cup.

$$
h(t)=\left[\frac{3}{\pi}\left(\frac{H}{R}\right)^{2} V(t)\right]^{1 / 3}
$$

```
% Prob7em 9.8a
clear
clc
disp('Problem 9.8a: Scott Thomas')
R = 1.5; %in
H = 4.0; %in
disp('Part a):')
N = 101;
Vdot = 2*ones(1,N);
h = zeros(1,N);
tfinal = 0;
while h(N) < 4.0
    tfinal = tfina1 + 0.001;
t = linspace(0,tfina1,N);
V = zeros(1,N);
V(1) = 0.0;
for k = 1:N-1
v(k+1)=V(k) + 0.5*(t(k+1) - t(k))*(Vdot(k) + Vdot(k+1));
end
V;
h = (3/pi*(H/R)^2*V).^(1/3);
end
h(N)
disp('Time to Fill:')
t(N)
plot(t,h), xlabe1('t (sec)')
ylabel('Water Height h (m)')
title('Problem 9.8a: Scott Thomas')
grid on
legend('Vdot = 2.0 in^3/sec)', 'Location', 'SouthEast')
```

Problem 9.8a: Scott Thomas
Part a):
ans $=$
$4.0002 \mathrm{e}+00$
Time to Fill:
ans $=$

Part b):

$$
V(t)=\int_{0}^{t} \dot{V} d t+V(0)=\int_{0}^{t}\left(1-e^{-2 t}\right) d t
$$

From Wikipedia:

$$
\begin{gathered}
\int e^{c x} \mathrm{~d} x=\frac{1}{c} e^{c x} \\
V(t)=\left[t-\frac{1}{(-2)} e^{-2 t}\right]_{0}^{t} \\
V(t)=\left[t+\frac{1}{2} e^{-2 t}\right]-\left[(0)+\frac{1}{2} e^{-2 \cdot 0}\right] \\
V(t)=t+\frac{1}{2} e^{-2 t}-\frac{1}{2} \\
V(t)=t+\frac{1}{2}\left(e^{-2 t}-1\right)
\end{gathered}
$$

This equation cannot be solved for t directly. This is called a transcendental equation. The volume of water when the cup is full is given by:

$$
V=\frac{\pi}{3}\left(\frac{R}{H}\right)^{2} h^{3}=\frac{\pi}{3}\left(\frac{R}{H}\right)^{2} H^{3}=\frac{\pi}{3} R^{2} H=\frac{\pi}{3}(1.5)^{2}(4.0)=9.4248 \mathrm{in}^{3}
$$

Change the final time in the MATLAB program below until $V=9.4248 \mathrm{in}^{3}$ or $h=4.0 \mathrm{in}$.

```
% Prob7em 9.8b
clear
clc
disp('Problem 9.8b: Scott Thomas')
R = 1.5; %in
H = 4.0; %in
disp('Part b):')
N = 101;
% Iterate on the final time to find when V = 9.4248 in^3 or h = 4.0 in
timefinal = 5.2124;
t = linspace(0,timefinal,N);
vdot = 2*(1 - exp(-2*t));
%h = zeros(1,N);
v = zeros(1,N);
v(1) = 0.0;
for k = 1:N-1
v(k+1) = v(k) + 0.5*(t(k+1) - t(k))*(vdot(k) + vdot(k+1));
end
v;
h = (3/pi*(H/R)^2*V).^(1/3);
disp('V(N) =')
v(N)
disp('h(N) =')
h(N)
disp('Time to Fil1:')
t(N)
plot(t,h), xlabel('t (sec)')
ylabel('Water Height, h (in)')
title('Prob7em 9.8b: Scott Thomas')
grid on
legend('Vdot = 2(1 - e^{-2t} ) (in^3/sec)','Location', 'SouthEast')
```

Problem 9.8b: Scott Thomas
Part b):
$v(N)=$
ans $=$
$9.4239 \mathrm{e}+00$
$h(N)=$
ans $=$

$3.9999 \mathrm{e}+00$

Time to Fill:
ans $=$
$5.2124 \mathrm{e}+00$

