FINAL EXAM

Open Book, Closed Notes, Do not write on this sheet, Show all work

1. (20 points) Determine the shear force and moment acting at a section passing through point C in the beam.

2. (25 points) Determine the moment of inertia for the beam's cross-sectional area about the centroidal x^{\prime} axis. Each channel has a cross-sectional area of $A_{\mathrm{c}}=11.8 \mathrm{in}^{2}$ and a moment of inertia about a horizontal axis passing through its own centroid, C_{c}, of $\bar{I}_{x_{c}}=349 \mathrm{in}^{4}$.

3. (30 points) Determine the moment of inertia of the $14-\mathrm{kg}$ flywheel about the axis L.

4. (5 points each) Draw the free-body diagrams necessary to solve the following situations.

The tower truss has a weight of 575 lb and a center of gravity at G. The rope system is used to hoist it into the vertical position. If rope $C B$ is attached to the top of the shear leg $A C$ and a second rope $C D$ is attached to the truss, determine the required tension in $B C$ to hold the truss in the position shown. The base of the truss and the shear leg bears against the stake at A, which can be considered as a pin. Also, compute the compressive force acting along the shear leg $A C$.

(c)

The thin rod of weight W rests against the smooth wall and floor. Determine the magnitude of force \mathbf{P} needed to hold it in equilibrium.
(b)

Determine the force created in the hydraulic cylinders $E F$ and $A D$ in order to hold the shovel in equilibrium. The shovel load has a mass of 1.25 Mg and a center of gravity at G. All joints are pin connected.
(d)

If a force of $\mathbf{P}=30 \mathrm{lb}$ is applied perpendicular to the handle of the toggle press, determine the compressive force developed at C if $\theta=30^{\circ}$.
(e)

The gravel chute is supported by a truss at points A and F. The chute and contents, when full, weigh 300 lb per running foot. Determine the forces in members $C E$ and $E F$ of the truss.
(g)

Five coins are stacked in the smooth plastic container shown. If each coin weighs 0.0235 lb , determine the normal reactions of the bottom coin on the container at points A and B.
(f)

The $5000-\mathrm{lb}$ drum M is supported by the truss and a cable which is wrapped around the drum and fastened to the truss at B and D. Compute the forces in members $B C, G C$, and $G H$ using method of sections.
(h)

The hydraulic automobile hoist consists of two identical frames like the one shown. The hydraulic piston is centered between the two frames. A $4000-\mathrm{lb}$ automobile is supported in the position shown (2000 lb on each frame). Determine the force on the piston rod $E F$ on each of the two members $A B$, and the bearing reaction at A on $A B$.

