FINAL EXAM

Open Book, Closed Notes, Do not write on this sheet, Show all work

1. (20 points) For the beam and loading shown, draw the shear and bending-moment diagrams, and determine the magnitude and location of the maximum shear and bending moment.

2. (15 points) Two $\mathrm{L} 3 \times 3 \times 1 / 4-\mathrm{in}$. angles are welded to a $\mathrm{C} 10 \times 20$ channel. Determine the moments of inertia of the combined section with respect to the centroidal axes respectively parallel and perpendicular to the web of the channel.

FINAL EXAM

Open Book, Closed Notes, Do not write on this sheet, Show all work

3. (20 points) A portion of an 8 -in.-long steel rod of diameter 1.50 in . is turned to form the conical section shown. Knowing that the turning process reduces the moment of inertia of the rod with respect to the x axis by 20 percent, determine the height h of the cone. The specific weight of steel is $0.284 \mathrm{lb} / \mathrm{in}^{3}$, and the volume of a cone is

$$
V_{\mathrm{cone}}=\frac{\pi}{3} r^{2} h
$$

where r is the radius of the base of the cone, and h is the height of the cone.

4. (45 points total) Part 1: (20 points) Draw the freebody diagrams for the following situations. Part 2: (25 points) Solve problem (a).
(a)

The triangular plate of uniform thickness shown weighs 750 lb . Determine the tensions in the two cables supporting the plate and the reaction at the ball support.
(c)

The block W has a mass of 250 kg . Bar $A B$ rests against a smooth vertical wall at end B and is supported at end A with a ball-and-socket joint. The two cables are attached to a point on the bar midway between the ends. Determine the reactions at supports A and B and the tension in cable $C D$.
(b)

The shaft with two levers is used to change the direction of a force. Determine the force \mathbf{P} required for equilibrium and the reactions at supports A and B. The support at A is a ball bearing and the support at B is a thrust bearing. The bearings exert only force reactions on the shaft.
(d)

The door shown has a mass of 25 kg and is supported in a horizontal position by two hinges and a bar. The hinges have been properly aligned; therefore, they exert only force reactions on the door. Assume that the hinge at B resists any force along the axis of the hinge pins. Determine the reactions at supports A, B, and D.

