FINAL EXAM
Open Book, Closed Notes, Do not write on this sheet, Show all work
Problem 1: (25 points) Determine the shear and bending-moment equations between points C and D.

Problem 2: (30 points) The wheel is subjected to a torque of $M=50 \mathrm{~N}-\mathrm{m}$. If the coefficient of kinetic friction between the belt and the rim of the wheel is $\mu_{\mathrm{k}}=0.3$, determine the smallest horizontal force P that must be applied to the lever to stop the wheel.

Problem 3: (25 points) Determine the moment of inertia of the 14-kg flywheel about the L axis.

Problem 4: (20 points) Draw the free-body diagrams for the four following situations.

The link is used to hold the rod in place.
Determine the required axial force on the screw at E if the largest force to be exerted on the rod at B, C, or D is to be 100 N . Also, find the magnitude of the reaction force at pin A. Assume all surfaces of contact are smooth.
(b)

Operation of exhaust and intake valves in an automobile engine consists of the cam C, push rod $D E$, rocker arm $E F G$ which rides on a smooth bearing at F, and a spring and valve, V. If the compression in the spring is 20 mm when the valve is open as shown, determine the normal force acting on the cam lobe at C. Assume the contact between the cam and the push rod at D is normal and smooth. The spring has a stiffness of $300 \mathrm{~N} / \mathrm{m}$.

