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The fully developed laminar flow within a re-entrant groove has been analyzed using
a finite element model. Re-entrant grooves have been used in both axially-grooved
heat pipes and in monogroove heat pipes. The main benefit to using this type of
wick structure is the reduction of the liquid pressure drop along the length of the
groove due to countercurrent liquid-vapor interaction at the meniscus. All previous
researchers assumed that the pressure drop within the liquid could be modelled
as flow within a smooth tube, but the results of the current analysis show that
this assumption can lead to significant errors in the pressure drop prediction. An
extensive literature survey was completed and the results of five previous studies
were used to validate the current numerical model. It was found that the present
finite element model is both more accurate and consumes less computer resources
than a finite difference based model developed previously by one of the authors
of the current manuscript. A parametric analysis was carried out to determine
the Poiseuille number, Po = fRe, the dimensionless mean velocity, v∗, and the
dimensionless volumetric flow rate, V̇ ∗, as functions of the geometry of the re-entrant
groove (groove height 1.0 ≤ H∗ ≤ 4.0, slot half-width 0.05 ≤ W ∗/2 ≤ 0.9, fillet radius
0.0 ≤ R∗

f ≤ 1.0), and the liquid-vapor shear stress (0.0 ≤ −τ
∗
lv ≤ 2.5). It was determined

that the flow variables were strongly affected by the groove height, slot half-width
and liquid-vapor shear stress, but were relatively unaffected by the fillet radius.
The case in which the meniscus recedes into the re-entrant groove was examined,
which could be a result of evaporator dry-out or insufficient liquid fill amount. The
cross-sectional area of the liquid in the groove, A∗

l , the meniscus radius, R
∗
m, and the

above-mentioned flow variables were calculated as functions of the meniscus contact
angle (0◦ ≤ φ ≤ 40◦) and meniscus attachment point (0.0 ≤ H∗

l ≤ 2.75). In general, the
flow variables were more strongly affected by the meniscus attachment point than
the meniscus contact angle. Finally, the results of the numerical model were used
to determine the capillary limit of a low-temperature heat pipe with two different
working fluids, water and ethanol, for a range of meniscus contact angles. The
capillary limit heat transfer was found to attain a maximum value in the slot region
and then decreased dramatically when the meniscus receded into the circular region
of the re-entrant groove.

Nomenclature

Ag = total cross-sectional area of the re-entrant groove, m2

A∗
g = Ag/R

2

Al = cross-sectional area of the liquid, m2

A∗
l = Al/R

2

Dh = hydraulic diameter, 4Al/P , m
D∗

h = Dh/R
f = friction coefficient, 2τw/ρv

2

hfg = heat of vaporization, J/kg
H = distance from the center of the circular portion of the re-entrant groove to the top of the slot, m
H∗ = H/R
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Hl = vertical location of the attachment point of the meniscus to the re-entrant groove wall, m
H∗

l = Hl/R
Hl,s = vertical location of the attachment point of the meniscus to the sinusoidal groove wall, m
Hs = height of the sinusoidal groove, m
Htr = height of the trapezoidal groove, m
K = thermal conductivity, W/(m-K)
La = adiabatic length, m
Lc = condenser length, m
Le = evaporator length, m
Leff = effective heat pipe length, Le/2 + La + Lc/2, m
n = coordinate normal to the liquid-vapor interface
n∗ = n/R
Ng = number of grooves
p = pressure, N/m2

P = wetted perimeter, m
P ∗ = P/R
Po = Poiseuille number, fRe

q
′′

lv = heat flux at the liquid-vapor interface, W/m2

q
′′∗
lv = q

′′

lv/q
′′′

R

q
′′′

= internal volumetric heat generation, W/m3

Q̇cap = capillary limit heat transport, W

Q̇g = heat transfer due to a single groove, W

Q̇t = total heat transported, NgQ̇g, W
R = radius of the circular portion of the re-entrant groove, m
Rf = radius of the fillet, m
R∗

f = Rf/R

Rm = radius of the meniscus, m
R∗

m = Rm/R
Rv = radius of the heat pipe vapor space, m
Re = Reynolds number, ρvDh/µ
T = temperature, K
Tsat = saturation temperature, K

T ∗ = KT/R2q
′′′

v = y-direction velocity, m/s
v = mean y-direction velocity, m/s
vl,max = maximum mean liquid velocity, m/s
v∗ = µv/R2(−dp/dy)
v∗ = µv/R2(−dp/dy)

V̇ = volumetric flow rate, vAl, m
3/s

V̇ ∗ = µV̇ /[R4(−dp/dy)]
W = width of the slot, m
W ∗ = W/R
Wl = width of the liquid meniscus at the attachment point to the re-entrant groove wall, m
W ∗

l = Wl/R
Wl,s = width of the liquid meniscus at the attachment point to the sinusoidal groove wall, m
Ws = width of the sinusoidal groove, m
Wtr = width of the trapezoidal groove, m
x, y, z = Cartesian coordinate directions
x∗, y∗, z∗ = x/R, y/R, z/R
xf,0, zf,0 = location of the center point of the circular fillet, m
x∗f,0 = xf,0/R =W ∗/2 +R∗

f

xt, zt = point of tangency of the fillet and the circular portion of the re-entrant groove, m

x∗t = xt/R = x∗f,0/
(

1 +R∗
f

)
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z∗f,0 = zf,0/R = z∗t − (z
∗
t − 1)

(

1− x∗f,0/x
∗
t

)

z∗t = zt/R = 1 +
√

1− x∗2t
z0 = location of the center point of the circular liquid meniscus, m
z∗0 = z0/R
α = circular segment duct half-angle, rad
β = aspect ratio for the rectangular and trapezoidal grooves, 2Hr/Wr or 2Htr/Wtr

γ = triangular groove half-angle, rad
θ = trapezoidal groove half-angle, rad
µ = absolute viscosity, Pa-s
ρ = density, kg/m3

σ = surface tension, N/m
τlv = shear stress at the liquid-vapor interface, N/m2

τ∗lv = τlv/R(−dp/dy)
τw = average shear stress at the wall, N/m2

φ = meniscus contact angle, rad
φ0 = minimum meniscus contact angle, rad
ψ1 = tan−1 [(W ∗

l /2) / (H
∗
l − 1)]

ψ2 = tan−1
[(

W ∗
l /2− x

∗
f,0

)

/
(

H∗
l − z

∗
f,0

)]

I. Introduction

For years, heat pipes have been widely used for thermal control in both terrestrial and space-based
applications. Heat pipes provide a high heat transfer rate with approximately isothermal behavior and self-
regulating cooling characteristics. For a high heat transfer rate, the capillary structure must be designed in
such a way that it combines a high capillary pumping pressure (pressure difference between the liquid and
vapor sides of the meniscus) with a low axial pressure drop in the liquid. The first aim can be achieved by
using small rectangular, trapezoidal, or triangular grooves. However, these structures lead to a relatively
high axial pressure drop in the liquid and, therefore, the second aim cannot be fulfilled. Harwell et al.
[1] described the heat transfer characteristics of an axially-grooved aluminum extrusion with a re-entrant
groove profile. A typical cross section for this type of heat pipe is shown in Fig. 1(a). This configuration
combines a high capillary pumping pressure with a low axial pressure drop in the liquid (Dubois et al. [2],
[3]). In addition, the retardation of the liquid flow due to the countercurrent vapor flow over the liquid-vapor
interface is minimized as compared to other axial groove designs. However, the radial thermal resistance
to heat transfer of the re-entrant groove geometry may be larger compared to rectangular, trapezoidal, or
triangular groove designs due to an increase in the wall thickness of the heat pipe.
The monogroove heat pipe developed by Alario et al. [4] and Alario [5] is an aluminum extrusion with a

single slot connecting the vapor channel to the liquid artery, as shown in Fig. 1(b). In general, axially-grooved
heat pipes utilize a relatively large number of small grooves as a compromise between axial transport capacity
and radial heat-transfer efficiency. In the monogroove design, the single re-entrant groove is made up of the
slot and the liquid artery, which returns the liquid to the evaporator section using the capillary pumping
pressure generated by the meniscus residing in the slot. Circumferential grooves on the inside wall in the
vapor space provide a means for liquid communication between the vapor space and the re-entrant groove
(Henson [6], Brown et al. [7], Schlitt [8]). This geometry combines the advantages of a large axial artery (low
pressure drop in the liquid) with large areas for evaporation and condensation on the circumferential wall
grooves. In addition, the heat input is removed as far as possible from the liquid artery, which reduces the
possibility of boiling within the liquid artery, which would cause the artery to deprime. A disadvantage of
the monogroove heat pipe is related to the narrow slot width, which is necessary for a high capillary pumping
pressure within the slot. This causes the liquid fill amount inside the liquid channel to be so critical that a
small decrease in liquid fill may result in a significant decrease in the capillary pumping pressure and hence
a significant decrease in the maximum heat transport.
Previous researchers (e.g., Harwell et al. [1], Alario et al. [4], Henson [6], Brandt et al. [9]) have modelled

the flow of liquid in both re-entrant groove heat pipes and in monogroove heat pipes as a one-dimensional
laminar flow through a smooth-walled tube in order to determine the pressure drop (Po = fRe = 16). In
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Figure 1: Heat pipes using re-entrant grooves: (a) Multiple re-entrant grooves distributed uniformly around
the circumference; (b) Monogroove heat pipe design with a single re-entrant groove.
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Figure 2: Geometric parameters defining the flow of liquid in a re-entrant groove.

addition, the effect of the shear stress at the liquid-vapor interface has not been accounted for. While Brandt
et al. [9] examined the effect of the liquid fill amount in the groove on the capillary pressure, only the case
in which the liquid meniscus remained attached to the top of the slot was examined. The present study has
addressed these shortcomings by numerically solving the conservation of mass and momentum equations for
laminar fully-developed flow in re-entrant grooves with an applied shear stress at the liquid-vapor interface.
The meniscus contact angle, countercurrent shear stress at the liquid-vapor interface and groove geometry
were varied, and the mean velocity, Poiseuille number and volumetric flow rate have been determined. The
results of the numerical model were used in an analytical model of a heat pipe with axial re-entrant grooves.
The capillary limit was determined as a function of the minimum meniscus contact angle, groove fill amount
and the working fluid.

II. Mathematical Model

A constant property liquid flows steadily in a re-entrant groove as shown in Fig. 2. A meniscus, which is
assumed to be circular, comprises the liquid-vapor interface. For fully developed laminar flow with no body
forces, the dimensionless conservation of mass and momentum equations reduce to (White [10])

∂2v∗

∂x∗2
+
∂2v∗

∂z∗2
= −1 (1)
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On the groove wall, the no-slip condition is in effect.

v∗ = 0 : x∗ =























√

z∗ (2− z∗), 0 ≤ z∗ ≤ z∗t (Circular Region)

x∗f,0 −

√

R∗2
f −

(

z∗ − z∗f,0

)2

, z∗t ≤ z∗ ≤ z∗f,0 (Fillet Region)

W ∗/2, z∗f,0 ≤ z∗ ≤ 1 +H∗ (Slot Region)

(2)

At the line of symmetry, the velocity gradient is zero in the x∗ direction

∂v∗

∂x∗
= 0 : x∗ = 0, 0 ≤ z∗ ≤ 1 +H∗ (3)

At the liquid-vapor interface, a uniform shear stress due to vapor flowing above the meniscus is imposed in
the y direction.

∂v∗

∂n∗
= τ∗lv (4)

The dimensional liquid-vapor interfacial shear stress can be cast in terms of the friction factor of the vapor.

τlv =



























[

ρv (vv)
2

2

]

fv for cocurrent flow

−

[

ρv (vv)
2

2

]

fv for countercurrent flow

(5)

The equation of the circular liquid meniscus is

x∗ =

√

R∗2
m − (z∗ − z∗0)

2
(6)

The vertical range of this equation depends upon the location of the attachment point of the meniscus to
the groove wall.
For H∗

l ≤ 1 (Lower Circular Region):

z∗0 −R
∗
m ≤ z∗ ≤ H∗

l if φ < −ψ1
H∗

l ≤ z∗ ≤ z∗0 +R
∗
m if φ > −ψ1

(7)

For H∗
l ≥ 1 (Upper Circular Region, Fillet Region and Slot Region):

z∗0 −R
∗
m ≤ z∗ ≤ H∗

l (8)

The radius, half-width and vertical location of the center point of the circular liquid meniscus are given
below.

R∗
m =

√

(

W ∗
l

2

)2

+ (H∗
l − z

∗
0)
2

(9)

W ∗
l

2
=























√

H∗
l (2−H

∗
l ), 0 ≤ H∗

l ≤ z∗t (Circular Region)

x∗f,0 −

√

R∗2
f −

(

H∗
l − z

∗
f,0

)2

, z∗t ≤ H∗
l ≤ z∗f,0 (Fillet Region)

W ∗/2, z∗f,0 ≤ H∗
l ≤ 1 +H

∗ (Slot Region)

(10)

z∗0 =







































H∗
l −

(W ∗
l /2)

tan (φ+ ψ1)
, 0 ≤ H∗

l ≤ z∗t (Circular Region)

H∗
l −

(W ∗
l /2)

tan (φ+ ψ2)
, z∗t ≤ H∗

l ≤ z∗f,0 (Fillet Region)

H∗
l +

(

W ∗
l

2

)

tanφ, z∗f,0 ≤ H∗
l ≤ 1 +H

∗ (Slot Region)

(11)
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The Poiseuille number of the liquid in the groove is given by

Po = fRe =
D∗2

h

2v∗
(12)

The mean velocity is defined as

v∗ =
2

A∗
l

∫ x∗

0

∫ z∗

0

v∗ dz∗ dx∗ (13)

The dimensionless hydraulic diameter is

D∗
h =

4A∗
l

P ∗
(14)

The cross-sectional area of the liquid is given in terms of the meniscus attachment point.
For 0 ≤ H∗

l ≤ 1 (Lower Circular Region):

A∗
l =

(

W ∗
l

2

)



2z∗0 −

√

R∗2
m −

(

W ∗
l

2

)2



−R∗2
m sin

−1

(

W ∗
l /2

R∗
m

)

−







(

W ∗
l

2

)



2−

√

1−

(

W ∗
l

2

)2



− sin−1
(

W ∗
l

2

)







for φ < −ψ1

(15)

A∗
l =

(

W ∗
l

2

)



2z∗0 +

√

R∗2
m −

(

W ∗
l

2

)2



+R∗2
m sin

−1

(

W ∗
l /2

R∗
m

)

−







(

W ∗
l

2

)



2−

√

1−

(

W ∗
l

2

)2



− sin−1
(

W ∗
l

2

)







for φ ≥ −ψ1

(16)

For 1 ≤ H∗
l ≤ z∗t (Upper Circular Region):

A∗
l = π +

(

W ∗
l

2

)



2 (H∗
l − 1)−

√

1−

(

W ∗
l

2

)2



− sin−1
(

W ∗
l

2

)

+R∗2
m

[

cos−1
(

H∗
l − z

∗
0

R∗
m

)

− π

]

− (H∗
l − z

∗
0)

√

R∗2
m − (H∗

l − z
∗
0)
2
for φ <

π

2
− ψ1

(17)

A∗
l = π +

(

W ∗
l

2

)



2z∗0 −

√

R∗2
m −

(

W ∗
l

2

)2



−R∗2
m sin

−1

(

W ∗
l /2

R∗
m

)

−







(

W ∗
l

2

)



2 +

√

1−

(

W ∗
l

2

)2



+ sin−1
(

W ∗
l

2

)







for φ ≥
π

2
− ψ1

(18)
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For z∗t ≤ H∗
l ≤ z∗f,0 (Fillet Region):

A∗
l = π +W ∗

l H
∗
l +

(

x∗t − x
∗
f,0

)

[

2z∗f,0 −

√

R∗2
f −

(

x∗t − x
∗
f,0

)2

]

−

(

W ∗
l

2
− x∗f,0

)



2z∗f,0 −

√

R∗2
f −

(

W ∗
l

2
− x∗f,0

)2





−R∗2
f

[

sin−1

(

x∗t − x
∗
f,0

R∗
f

)

− sin−1

(

W ∗
l /2− x

∗
f,0

R∗
f

)]

− x∗t

(

2 +
√

1− x∗2t

)

− sin−1 (x∗t ) +R
∗2
m

[

cos−1
(

H∗
l − z

∗
0

R∗
m

)

− π

]

− (H∗
l − z

∗
0)

√

R∗2
m − (H∗

l − z
∗
0)
2
for φ <

π

2
− ψ2

(19)

A∗
l = π +

(

W ∗
l

2

)



2z∗0 −

√

R∗2
m −

(

W ∗
l

2

)2



−R∗2
m sin

−1

(

W ∗
l /2

R∗
m

)

+
(

x∗t − x
∗
f,0

)

[

2z∗f,0 −

√

R∗2
f −

(

x∗t − x
∗
f,0

)2

]

−

(

W ∗
l

2
− x∗f,0

)



2z∗f,0 −

√

R∗2
f −

(

W ∗
l

2
− x∗f,0

)2





−R∗2
f

[

sin−1

(

x∗t − x
∗
f,0

R∗
f

)

− sin−1

(

W ∗
l /2− x

∗
f,0

R∗
f

)]

− x∗t

(

2 +
√

1− x∗2t

)

− sin−1 (x∗t ) for φ ≥
π

2
− ψ2

(20)

For z∗f,0 ≤ H∗
l ≤ 1 +H

∗ (Slot Region):

A∗
l = π +

(

W ∗
l

2

)



2z∗0 −

√

R∗2
m −

(

W ∗
l

2

)2



−R∗2
m sin

−1

(

W ∗
l /2

R∗
m

)

+
(

x∗t − x
∗
f,0

)

[

2z∗f,0 −

√

R∗2
f −

(

x∗t − x
∗
f,0

)2

]

+ 2R∗
fz

∗
f,0 −R

∗2
f

[

sin−1

(

x∗t − x
∗
f,0

R∗
f

)

+
π

2

]

− x∗t

(

2 +
√

1− x∗2t

)

− sin−1 (x∗t )

(21)

The total cross-sectional area of the re-entrant groove is

A∗
g = π +W ∗ (1 +H∗) +

(

x∗t − x
∗
f,0

)

[

2z∗f,0 −

√

R∗2
f −

(

x∗t − x
∗
f,0

)2

]

+ 2R∗
fz

∗
f,0 −R

∗2
f

[

sin−1

(

x∗t − x
∗
f,0

R∗
f

)

+
π

2

]

− x∗t

(

2 +
√

1− x∗2t

)

− sin−1 (x∗t )

(22)

The wetted perimeter is also given in terms of the location of the attachment point of the meniscus.
For 0 ≤ H∗

l ≤ z∗t (Circular Region):

P ∗ = π + 2 tan−1
(

H∗
l − 1

W ∗
l /2

)

(23)
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For z∗t ≤ H∗
l ≤ z∗f,0 (Fillet Region):

P ∗ = π + 2 tan−1
(

z∗t − 1

x∗t

)

+ 2R∗
f

[

tan−1

(

W ∗
l /2− x

∗
f,0

H∗
l − z

∗
f,0

)

− tan−1

(

x∗t − x
∗
f,0

z∗t − z
∗
f,0

)]

(24)

For z∗f,0 ≤ H∗
l ≤ 1 +H

∗ (Slot Region):

P ∗ = π + 2 tan−1
(

z∗t − 1

x∗t

)

+ 2R∗
f

[

π

2
− tan−1

(

x∗t − x
∗
f,0

z∗t − z
∗
f,0

)]

+ 2
(

H∗
l − z

∗
f,0

)

(25)

III. Numerical Model Validation

The finite-element code available to the researchers could solve the elliptic Poisson equation [eqn. (1)]
with mixed boundary conditions [eqns. (2)-(4)] by using a simple transformation. The fluid flow problem
was solved as a heat conduction problem by mapping the variables, geometry and boundary conditions. The
analogous steady state heat conduction problem is one in which a plate of uniform thickness and constant
properties has a uniform internal volumetric heat generation. The conservation of energy equation for this
case is given below in dimensionless form (Incropera and DeWitt [11]).

∂2T ∗

∂x∗2
+
∂2T ∗

∂z∗2
= −1 (26)

The boundary conditions for the energy equation must also match those of the fluid flow problem. The
temperature on the groove wall is zero.

T ∗ = 0 : x∗ =























√

z∗ (2− z∗), 0 ≤ z∗ ≤ z∗t (Circular Region)

x∗f,0 −

√

R∗2
f −

(

z∗ − z∗f,0

)2

, z∗t ≤ z∗ ≤ z∗f,0 (Fillet Region)

W ∗/2, z∗f,0 ≤ z∗ ≤ 1 +H∗ (Slot Region)

(27)

At the line of symmetry, the heat flux is zero in the x∗ direction

∂T ∗

∂x∗
= 0 : x∗ = 0, 0 ≤ z∗ ≤ 1 +H∗ (28)

The dimensionless heat flux at the liquid-vapor interface is specified.

∂T ∗

∂n∗
= −q

′′∗
lv (29)

The elliptic Poisson equation given by eqn. (26) with mixed boundary conditions [eqns. (27)-(29)] was
solved using a finite element code. The solution was considered to be independent of the number of elements
when the Poiseuille number changed by less than 1% when the number of elements was doubled.
The numerical model was tested against existing solutions for a variety of situations to ensure the validity

of the results (see Damle [12]). Shah and London [13] determined the friction factors for the laminar flow
within a family of circular segment ducts using a least-squares-matching technique. A comparison of the
Poiseuille number between the present solution and that given by Shah and London [13] for 8◦ ≤ 2α ≤ 160◦

was made, and the agreement was excellent with a maximum difference of 1.4%.
DiCola [14] solved the conservation of mass and momentum equations for the laminar flow of liquid in

rectangular grooves with a uniform shear stress imposed at the liquid-vapor interface using separation of
variables. The comparison of the Poiseuille number for the present solution and the solution given by DiCola
[14] for τ∗lv = −0.1, 0 and 1.0 and 0.1 ≤ β ≤ 1.0 resulted in a maximum difference of 1.2%.
Romero and Yost [15] analyzed the flow of liquid in a triangular groove with no shear stress at the

liquid-vapor interface. The present solution was compared with that provided by Romero and Yost [15] for
γ = 5◦ and 60◦ and 0.1◦ ≤ φ ≤ 80◦, which resulted in a maximum difference of 2.6%.
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Figure 3: Comparison of the present solution with that given by Thomas et al. [16] for the sinusoidal groove
(β = 0.5, W ∗

l,s/2 = 0.25, P ∗ = 1.15245): (a) Sinusoidal groove geometry; (b) Poiseuille number versus
liquid-vapor shear stress (φ = 72.34◦); (c) Poiseuille number versus meniscus contact angle (τ ∗lv = 2.0).
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Thomas et al. [16] and [17] solved the elliptic Poisson equation with mixed boundary conditions using
Gauss-Seidel iteration with successive over-relaxation for sinusoidal and trapezoidal grooves, respectively.
The results of the present solution for sinusoidal grooves are compared with those given by Thomas et al.
[16] in Fig. 3 for φ = 0◦, 25◦, 50◦, and 72.34◦ and −0.1 ≤ τ∗lv ≤ 2.0. The present numerical model was
also compared to that given by Thomas et al. [17] for trapezoidal grooves as shown in Fig. 4 for φ = 0◦,
20◦, 40◦, and 60◦ and −0.375 ≤ τ∗lv ≤ 5.0. Due to the rectangular nature of the grid used to solve the
Poisson equation, the shear stress boundary condition at the liquid-vapor interface given by eqn. (4) was
approximated by Thomas et al. [16] and [17] as follows.

∂v∗

∂n∗
'
∂v∗

∂z∗
= τ∗lv (30)

In other words, the shear stress was not applied normally to the liquid-vapor interface except when the
interface was parallel to the x∗ axis. In the present analysis, it was possible to apply the shear stress
normally to the liquid surface using the finite element code. This caused a significant difference between
the present analysis and those given by Thomas et al. [16] and [17]. When the liquid surface was flat, i.e.,
when the meniscus contact angle was φ = 72.34◦ for the sinusoidal groove (Fig. 3(b)) and φ = 60◦ for the
trapezoidal groove (Fig. 4(b)), the results of the present analysis and the results obtained by Thomas et al.
[16] and [17] were in agreement with a maximum difference 1.4% for the sinusoidal groove and 1.4% for the
trapezoidal groove. As the meniscus contact angle decreased, the difference between the present results and
those by Thomas et al. [16] and [17] differed by as much as 14%, as shown in Figs. 3(c) and 4(c). This
illustrates that the shear stress approximation considered by Thomas et al. [16] and [17] was the cause of
the difference in the results.

IV. Results and Discussion

A. Parametric Analysis
A numerical study has been completed in which the flow field in a re-entrant groove has been solved.

Specifically, the mean velocity, Poiseuille number, and volumetric flow rate are reported for various values
of the dimensionless shear stress at the liquid-vapor interface, groove height, slot width, and fillet radius.
Figure 5 shows the dimensionless velocity in a typical re-entrant groove with and without countercurrent
shear stress at the free surface. For τ ∗lv = 0.0, Fig. 5(a), the maximum velocity is located slightly above the
center of the circular region. In Fig. 5(b), where a countercurrent shear stress (τ ∗lv = −2.5) is imposed on
the liquid-vapor interface, the velocity is maximum inside the circular region and is decreasing in the slot
region. Due to the magnitude of the countercurrent shear at the liquid-vapor interface, the liquid near the
meniscus was forced in the direction opposite to the pressure gradient.
The mean velocity, Poiseuille number, and the volumetric flow rate versus the liquid-vapor shear stress

are shown in Fig. 6. The mean velocity is linear with countercurrent liquid-vapor shear stress as discussed by
Thomas et al. [16]. An increase in the shear stress offers more resistance to the fluid flow, which causes the
mean velocity to decrease. The Poiseuille number increases monotonically with liquid-vapor shear stress as
expected, since the Poiseuille number is inversely proportional to the mean velocity. The Poiseuille number
increases dramatically with liquid-vapor shear stress for H∗ ≤ 1.5. This occurs because the liquid-vapor
interface is much closer to the circular region, and therefore the effect of the shear stress penetrates into the
circular region more profoundly. Also, the volumetric flow rate decreases with an increase in shear stress,
which is due to the decrease in mean velocity.
The variation of the three flow variables with the slot height is given in Fig. 7 for τ ∗lv = 0.0. The mean

velocity is a weak function of H∗ for the range of slot half-width studied here, and is nearly constant for
W ∗/2 ≤ 0.5. The Poiseuille number approaches the limiting value of Po = 16 (circular duct) as the groove
height H∗ → 1 and as the slot width W ∗/2 → 0 as expected. The mean velocity, Poiseuille number and
volumetric flow rate are affected by the slot width more significantly when the groove height is larger. For
slot widths less than W ∗/2 ≤ 0.3, the volumetric flow rate does not change significantly, regardless of groove
height. Since the area and mean velocity increase with both H∗ andW ∗/2, the volumetric flow rate increases
in proportion.
The effect of slot width is shown in Fig. 8. The mean velocity, Poiseuille number and volumetric flow

rate are affected by the slot width more significantly as the groove height increases. The Poiseuille number
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Figure 4: Comparison of the present solution with that given by Thomas et al. [17] for the trapezoidal
groove (β = 1.0, θ = 30◦): (a) Trapezoidal groove geometry; (b) Poiseuille number versus liquid-vapor shear
stress (φ = 60◦); (c) Poiseuille number versus meniscus contact angle (τ ∗lv = 5.0).
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Figure 5: Dimensionless velocity fields for laminar flow in a re-entrant groove (H∗ = 1.75, H∗
l = 2.75, W

∗/2
= 0.5, φ = 90◦: (a) τ∗lv = 0.0; (b) τ

∗
lv = −2.5.
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l = H∗ + 1): (a) Mean velocity; (b) Poiseuille number; (c) Volumetric

flow rate.
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increases substantially with slot width forW ∗/2 ≤ 0.4, and then becomes relatively constant. The volumetric
flow rate is a monotonic function of slot width, but is nearly constant for W ∗/2 ≤ 0.3 for all values of groove
height studied here. This is of interest for the monogroove-style of heat pipe, wherein the slot width is very
small in comparison to the circular portion of the groove.
The effect of the fillet radius was investigated as shown to scale in Fig. 9. The variation of the flow

variables with the fillet radius over a range of slot widths is presented in Fig. 10. In general, the mean
velocity, Poiseuille number and volumetric flow rate are very weak functions of the fillet radius due to the
small change in liquid area with fillet radius.

B. Effect of Groove Fill Amount
The dimensions of the grooves analyzed by Brandt et al. [9] were used to determine the mean velocity,

volumetric flow rate and Poiseuille number of liquid flowing in a re-entrant groove as a function of the
amount of liquid in the groove. Faghri [18] gives values of the minimum meniscus contact angle for a
receding meniscus for various liquids in contact with metal walls. Since the range for φ0 given by Faghri is
fairly large, the minimum meniscus contact angle was varied from φ0 = 0

◦ to 40◦.
Figure 11(a) shows the case when liquid evaporates from a re-entrant groove with φ0 = 10

◦. Initially,
the groove is full with φ = 90◦. The contact angle decreases until the minimum meniscus contact angle
φ0 for the particular solid-liquid combination is reached. Past this point, the meniscus detaches from the
top of the groove and recedes into the groove (Hopkins et al. [19]). When the meniscus reaches the fillet
region of the groove, the cross-sectional area decreases dramatically for small changes in the height of the
meniscus attachment point due to the requirement that the contact angle must remain constant, as shown in
Fig. 12(a). The decrease in liquid area is more significant in the fillet and circular regions of the groove for
smaller values of φ0. In fact, the liquid area A

∗
l → 0 when H∗

l → z∗t for φ0 = 0
◦, since the meniscus radius

equals the wall radius for this case. The meniscus radius is shown as a function of the meniscus attachment
point in Fig. 12(b). During the meniscus recession process, after the minimum meniscus contact angle has
been reached, R∗

m is constant in the slot region. In the fillet region, however, the meniscus radius may
increase or decrease as the meniscus recedes further into the re-entrant groove depending on φ0. In all cases,
as the meniscus continues to recede into the circular region, the meniscus radius increases dramatically. In
the lower circular region shown in Fig. 11, the radius of curvature may approach infinity depending on the
minimum meniscus contact angle and the attachment point of the meniscus to the groove wall. Past this
point, the liquid in the groove can become convex instead of concave, as shown in Fig. 11(b).
The flow variables versus the meniscus attachment point are presented in Fig. 13. As the liquid recedes

into the groove, the mean velocity increases, attains a maximum and then decreases to zero. The minimum
meniscus contact angle does not affect the mean velocity significantly until the meniscus reaches the upper
circular region, as shown in Fig. 13(a). In Fig. 13(b), the Poiseuille number is relatively constant in the slot
region for a given meniscus contact angle, and then decreases in the fillet region due to the sharp decrease
in the liquid cross-sectional area. This point can be seen by recasting the Poiseuille number in terms of the
liquid area by combining eqns. (12) and (14).

Po =
8A∗2

l

P ∗v∗
(31)

The volumetric flow rate is shown in Fig. 13(c), where the flow rate decreases steadily in the slot region,
and then decreases very quickly in the fillet region, which follows the trend in the mean velocity. The
flow variables are also presented in Fig. 14 versus the groove fill amount. Interestingly, the dimensionless
volumetric flow rate for all of the meniscus contact angles studied here nearly collapse to a single curve.

C. Capillary Limit Analysis for a Heat Pipe using Axial Re-entrant Grooves
Using the results of the numerical analysis, the capillary limit prediction for a heat pipe with re-entrant

grooves is proposed. The objective is to use the results of the analysis on the effect of groove fill amount to
determine the sensitivity of the performance of the heat pipe with groove fill and minimum meniscus contact
angle. It is assumed that no body forces act on the liquid in the grooves, the radius of the liquid meniscus
is constant along the length of the groove, and the liquid-vapor shear stress is negligible.
A pressure balance within the heat pipe results in the following expression for the capillary limit (Faghri

[18], Chi [20])
∆pcap,max ≥ ∆pv +∆pl (32)
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Figure 9: Analysis of the effect of fillet radius in a re-entrant groove (to scale, φ = 90◦, H∗ = 2.0, H∗
l = 3.0,

τ∗lv = 0.0): (a) W
∗/2 = 0.1; (b) W ∗/2 = 0.2; (c) W ∗/2 = 0.3; (d) W ∗/2 = 0.4; (e) W ∗/2 = 0.5.
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Figure 10: Variation of the flow variables with fillet radius (φ = 90◦, H∗ = 2.0, H∗
l = 3.0, τ

∗
lv = 0.0): (a)

Mean velocity; (b) Poiseuille number; (c) Volumetric flow rate.
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Figure 11: Analysis of liquid fill amount in a re-entrant groove (to scale, H∗ = 1.75, W ∗/2 = 0.5, R∗
f = 0.1):

(a) φ0 = 10
◦; (b) φ0 = 40

◦.
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Figure 12: Variation of geometric properties with meniscus attachment point (H∗ = 1.75, W ∗/2 = 0.5,
R∗

f = 0.1): (a) Liquid cross-sectional area; (b) Meniscus radius.
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Figure 13: The effect of meniscus attachment point on the flow variables for the re-entrant groove (H∗ = 1.75,
W ∗/2 = 0.5, R∗
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lv = 0.0): (a) Mean velocity; (b) Poiseuille number; (c) Volumetric flow rate.
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Figure 14: The effect of liquid fill amount on the flow variables for the re-entrant groove (H∗ = 1.75,
W ∗/2 = 0.5, R∗

f = 0.1, τ
∗
lv = 0.0): (a) Mean velocity; (b) Poiseuille number; (c) Volumetric flow rate.
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Table 1: Specifications of the re-entrant groove heat pipe.
Evaporator length Le = 15.2× 10

−2 m
Adiabatic length La = 8.2× 10

−2 m
Condenser length Lc = 15.2× 10

−2 m
Radius of the heat pipe vapor space Rv = 8.59× 10

−3 m
Radius of the circular portion of the groove R = 0.8× 10−3 m
Groove height H = 1.4× 10−3 m
Slot half-width W/2 = 0.4× 10−3 m
Number of grooves Ng = 15
Operating temperature Tsat = 60

◦C

The capillary pressure for an axial groove is

∆pcap,max =
σ

Rm

(33)

For a circular cross section heat pipe with uniform heat input and output along the lengths of the evaporator
and condenser, respectively, the pressure drop in the vapor is

∆pv =
8µvLeffQ̇t

πρvhfgR4
v

(34)

The Poiseuille number of the vapor flow was modelled as laminar flow within a smooth tube with a circular
cross section (Pov = 16).
The pressure drop in the liquid was found using the dimensionless mean velocity determined by the

numerical model.

dpl = −

(

µlvl

R2v∗

)

dy (35)

For a constant heat flux in both the evaporator and condenser sections, eqn. (35) can be integrated to
determine the total pressure drop in the re-entrant groove.

∆pl = Leff

(

µlvl,max

R2v∗

)

(36)

The maximum liquid velocity in a groove is in the adiabatic section.

vl,max =
Q̇g

ρlAlhfg
(37)

A closed-form solution for the capillary limit of a heat pipe with re-entrant axial grooves and no body forces
is

Q̇cap =
σhfg
RmLeff

(

µl

NgR4ρlV̇ ∗
+

8µv

πρvR4
v

)−1

(38)

Equation (38) was evaluated using the results of the analysis for the effect of groove fill amount for the heat
pipe presented in Table 1. The properties of water and ethanol were found by evaluating the temperature-
dependent equations provided by Faghri [18]. The capillary limit heat transport is shown versus the meniscus
attachment point in Fig. 15 and versus the groove fill amount in Fig. 16.
When the groove is completely full with φ = 90◦, the capillary limit is zero due to the infinite meniscus

radius. The capillary limit quickly increases as the contact angle decreases to the minimum meniscus contact
angle, at which point Q̇cap begins to fall off due to the decrease in volumetric flow rate. The maximum value
of the capillary limit is greater for smaller values of meniscus contact angle, as expected. Fig. 15 clearly shows
that when the liquid recedes into the fillet region, the heat transport decreases rapidly, which demonstrates
the importance of proper fluid fill amount in this type of heat pipe.
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Figure 15: Heat transport versus meniscus attachment point for different values of the minimum meniscus
contact angle (H∗ = 1.75, W ∗/2 = 0.5, R∗

f = 0.1, τ
∗
lv = 0.0): (a) Ethanol; (b) Water.
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Figure 16: Heat transport versus liquid fill amount for different values of the minimum meniscus contact
angle (H∗ = 1.75, W ∗/2 = 0.5, R∗

f = 0.1, τ
∗
lv = 0.0): (a) Ethanol; (b) Water.
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V. Conclusions

A study has been completed wherein the Poiseuille number, mean velocity, and volumetric flow rate of a
liquid in a re-entrant groove have been determined as functions of groove geometry, meniscus contact angle
and liquid-vapor shear stress. In addition, the effects of meniscus recession were discussed and related to
the performance of a heat pipe with axial re-entrant grooves. The main conclusions from this study are as
follows:

1. Using the finite element model it was possible to apply the countercurrent shear stress boundary
condition normally to the liquid meniscus, which gave more accurate results than those obtained by a
finite difference model used by one of the previous researchers (Thomas et al. [16], [17]). The error in
the Poiseuille number was found to be up to 14% for trapezoidal grooves and sinusoidal grooves. Also,
the computer resources required by the finite element model were much less as compared to the finite
difference model.

2. The results of the parametric analysis of the re-entrant groove showed that the Poiseuille number was
greatly affected by the liquid-vapor shear stress, groove height, and slot half-width, but was relatively
insensitive to the fillet radius. Significant errors in the prediction of the liquid pressure drop in an
axial re-entrant groove would be induced by assuming that the Poiseuille number was the same as that
for a smooth tube (Po = 16). Therefore, it is recommended that the Poiseuille number be evaluated
using the methodology outlined in this manuscript, particularly if countercurrent vapor flowing above
the meniscus imparts a significant shear stress on the liquid meniscus.

3. The volumetric flow rate for slot half-widths of W ∗/2 ≤ 0.3 approached a fairly constant value of V̇ ∗

= 0.41 for the groove height ranging from 1.0 ≤ H∗ ≤ 4.0 for a full groove with no shear stress at the
meniscus. This fact could be important to heat pipe designers for use with the analytical prediction
of the capillary limit provided in eqn. (38).

4. The capillary limit heat transfer attained a maximum value in the slot region and decreased dramati-
cally as the meniscus receded into the circular region of the re-entrant groove. This shows the critical
nature of the fluid fill amount in heat pipes with axial re-entrant grooves.
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