Statics Homework Handout 7:

Homework Assignment \#7: 7.7, 7.16, 7.40, 7.52, 7.80
7.5 Determine the internal forces at point J of the structure shown.

Fig. P7.5 and P7.6
7.6 Determine the internal forces at point K of the structure shown.
7.7 A semicircular rod is loaded as shown. Determine the internal forces at point J.

Fig. P7.7 and P7.8
7.16 Knowing that the radius of each pulley is 200 mm and neglecting friction, determine the internal forces at point K of the frame shown.

Fig. P7.15 and P7.16
7.29 through 7.32 For the beam and loading shown, (a) draw the shear and bending-moment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

Fig. P7.30
7.39 through 7.42 For the beam and loading shown, (a) draw the shear and bending-moment diagrams, (b) determine the maximum absolute values of the shear and bending moment.

Fig. P7.40
7.52 through 7.54 Draw the shear and bending-moment diagrams for the beam $A B$, and determine the maximum absolute values of the shear and bending moment.

Fig. P7.53
Fig. P7. 52
7.80 For the beam shown, draw the shear and bending-moment diagrams, and determine the magnitude and location of the maximum absolute value of the bending moment, knowing that $(a) M=0$, $(b) M=24 \mathrm{kip} \cdot \mathrm{ft}$.

Fig. P7.80
7.85 and 7.86 For the beam and loading shown, (a) write the equations of the shear and bending-moment curves, (b) determine the magnitude and location of the maximum bending moment.

Fig. P7.85

