Homework Assignment \#8: 8.2, 8.14, 8.65, 8.121
8.1 Determine whether the block shown is in equilibrium and find the magnitude and direction of the friction force when $\theta=30^{\circ}$ and $P=50 \mathrm{lb}$.

Fig. P8.1 and P8.2
8.2 Determine whether the block shown is in equilibrium and find the magnitude and direction of the friction force when $\theta=35^{\circ}$ and $P=100 \mathrm{lb}$. $P=100 \mathrm{lb}$.
8.3 Determine whether the block shown is in equilibrium and find the magnitude and direction of the friction force when $\theta=40^{\circ}$ and $P=400 \mathrm{~N}$.

Fig. P8.3, P8.4, and P8.5
8.5 Knowing that $\theta=45^{\circ}$, determine the range of values of P for which equilibrium is maintained.
8.13 and 8.14 The coefficients of friction are $\mu_{s}=0.40$ and $\mu_{k}=$ 0.30 between all surfaces of contact. Determine the smallest force \mathbf{P} required to start the $30-\mathrm{kg}$ block moving if cable $A B(a)$ is attached as shown, (b) is removed.

Fig. P8.13

Fig. P8.14
8.17 A uniform crate of mass 30 kg must be moved up along the 15° incline without tipping. Knowing that the force \mathbf{P} is horizontal, determine (a) the largest allowable coefficient of static friction between the crate and the incline, (b) the corresponding magnitude of the force \mathbf{P}.

Fig. P8. 17
8.18 A worker slowly moves a $50-\mathrm{kg}$ crate to the left along a loading dock by applying a force \mathbf{P} at corner B as shown. Knowing that the crate starts to tip about the edge E of the loading dock when $a=200 \mathrm{~mm}$, determine (a) the coefficient of kinetic friction between the crate and the loading dock, (b) the corresponding magnitude P of the force.

Fig. P8. 18
8.64 and 8.65 Two 10° wedges of negligible weight are used to move and position the $400-\mathrm{lb}$ block. Knowing that the coefficient of static friction at all surfaces of contact is 0.25 , determine the smallest force \mathbf{P} that should be applied as shown to one of the wedges.

Fig. P8.64

Fig. P8.65
8.66 and 8.67 The elevation of the end of the steel beam supported by a concrete floor is adjusted by means of the steel wedges E and F. The base plate $C D$ has been welded to the lower flange of the beam, and the end reaction of the beam is known to be 100 kN . The coefficient of static friction is 0.30 between two steel surfaces and 0.60 between steel and concrete. If the horizontal motion of the beam is prevented by the force \mathbf{Q}, determine (a) the force \mathbf{P} required to raise the beam, (b) the corresponding force \mathbf{Q}.

Fig. P8.66
8.121 A 300-lb block is supported by a rope which is wrapped $1 \frac{1}{2}$ times around a horizontal rod. Knowing that the coefficient of static friction between the rope and the rod is 0.15 , determine the range of values of P for which equilibrium is maintained.

Fig. P8.121
8.122 The coefficient of static friction between block B and the horizontal surface and between the rope and support C is 0.40 . Knowing that $m_{A}=12 \mathrm{~kg}$, determine the smallest mass of block B for which equilibrium is maintained.

Fig. P8.122 and P8.123
8.124 A flat belt is used to transmit a torque from drum B to drum A. Knowing that the coefficient of static friction is 0.40 and that the allowable belt tension is 450 N , determine the largest torque that can be exerted on drum A.

Fig. P8.124
8.127 A flat belt is used to transmit a torque from pulley A to pulley B. The radius of each pulley is 60 mm , and a force of magnitude $P=900 \mathrm{~N}$ is applied as shown to the axle of pulley A. Knowing that the coefficient of static friction is 0.35 , determine (a) the largest torque which can be transmitted, (b) the corresponding maximum value of the tension in the belt.

Fig. P8.127
8.140 A recording tape passes over the 20 -mm-radius drive drum B and under the idler drum C. Knowing that the coefficients of friction between the tape and the drums are $\mu_{s}=0.40$ and $\mu_{k}=0.30$ and that drum C is free to rotate, determine the smallest allowable value of P if slipping of the tape on drum B is not to occur.

Fig. P8. 140

