Statics Homework Handout 9:

Homework Assignment #9: 9.49, 9.50, 9.51, 9.54, 9.115, 9.127

9.31 and 9.32 Determine the moment of inertia and the radius of gyration of the shaded area with respect to the x axis.

9.33 and 9.34 Determine the moment of inertia and the radius of gyration of the shaded area with respect to the y axis.

9.49 Two 20-mm steel plates are welded to a rolled S section as shown. Determine the moments of inertia and the radii of gyration of the section with respect to the centroidal x and y axes.

9.50 To form a reinforced box section, two rolled W sections and two plates are welded together. Determine the moments of inertia and the radii of gyration of the combined section with respect to the centroidal axes shown.

9.51 Four $3 \times 3 \times \frac{1}{4}$ -in. angles are welded to a rolled W section as shown. Determine the moments of inertia and the radii of gyration of the combined section with respect to its centroidal x and y axes.

9.54 To form an unsymmetrical girder, two $76 \times 76 \times 6.4$ -mm angles and two $152 \times 102 \times 12.7$ -mm angles are welded to a 16-mm steel plate as shown. Determine the moments of inertia of the combined section with respect to its centroidal x and y axes.

9.115 A piece of thin, uniform sheet metal is cut to form the machine component shown. Denoting the mass of the component by m, determine its moment of inertia with respect to (a) the x axis, (b) the y axis.

9.117 A thin plate of mass m has the trapezoidal shape shown. Determine the mass moment of inertia of the plate with respect to (a) the x axis, (b) the y axis.

9.127 Shown is the cross section of a molded flat-belt pulley. Determine its moment of inertia and its radius of gyration with respect to the axis AA'. (The density of brass is $8650 \,\mathrm{kg/m^3}$ and the density of the fiber-reinforced polycarbonate used is $1250 \,\mathrm{kg/m^3}$.)

9.128 Shown is the cross section of an idler roller. Determine its mass moment of inertia and its radius of gyration with respect to the axis AA'. (The specific weight of bronze is $0.310~{\rm lb/in^3}$; of aluminum, $0.100~{\rm lb/in^3}$; and of neoprene, $0.0452~{\rm lb/in^3}$.)

		Area in ²	Depth in.	Width in.		Axis X-X			Axis Y-Y		
	Designation				\overline{I}_x , in ⁴	\overline{k}_x , in.	\overline{y} , in.	\overline{I}_y , in ⁴	\overline{k}_y , in.	\overline{x} , in.	
W Shapes (Wide-Flange Shapes)	W18 × 76† W16 × 57 W14 × 38 W8 × 31	22.3 16.8 11.2 9.13	18.21 16.43 14.10 8.00	11.035 7.120 6.770 7.995	1330 758 385 110	7.73 6.72 5.88 3.47		152 43.1 26.7 37.1	2.61 1.60 1.55 2.02		
S Shapes (American Standard Shapes)	\$18 \times 55.7\frac{1}{512 \times 31.8}\$\$\$510 \times 25.4\$\$\$6 \times 12.5\$\$\$	16.1 9.35 7.46 3.67	18.00 12.00 10.00 6.00	6.001 5.000 4.661 3.332	804 218 124 22.1	7.07 4.83 4.07 2.45		20.8 9.36 6.79 1.82	1.14 1.00 0.954 0.705		
C Shapes (American Standard Channels)	C12 × 20.7† C10 × 15.3 C8 × 11.5 C6 × 8.2	6.09 4.49 3.38 2.40	12.00 10.00 8.00 6.00	2.942 2.600 2.260 1.920	129 67.4 32.6 13.1	4.61 3.87 3.11 2.34		3.88 2.28 1.32 0.692	0.799 0.713 0.625 0.537	0.698 0.634 0.571 0.512	
Angles $X \longrightarrow \overline{x} \longrightarrow \overline{y} X$	$\begin{array}{c} L6 \times 6 \times 1 \ddagger \\ L4 \times 4 \times \frac{1}{2} \\ L3 \times 3 \times \frac{1}{4} \\ L6 \times 4 \times \frac{1}{2} \\ L5 \times 3 \times \frac{1}{2} \\ L3 \times 2 \times \frac{1}{4} \end{array}$	11.00 3.75 1.44 4.75 3.75 1.19			35.5 5.56 1.24 17.4 9.45 1.09	1.80 1.22 0.930 1.91 1.59 0.957	1.86 1.18 0.842 1.99 1.75 0.993	35.5 5.56 1.24 6.27 2.58 0.392	1.80 1.22 0.930 1.15 0.829 0.574	1.86 1.18 0.842 0.987 0.750 0.493	

		Designation	Area mm ²	Depth Width		Axis X-X			Axis Y-Y		
and some control of the sound o						\overline{I}_x $10^6 \mathrm{mm}^4$	\overline{k}_x mm	\overline{y} mm	\overline{I}_y $10^6 \mathrm{mm}^4$	\overline{k}_y mm	\overline{x} mm
W Shapes (Wide-Flange Shapes) X—	Y	W460 × 113† W410 × 85 W360 × 57 W200 × 46.1	14400 10800 7230 5890	463 417 358 203	280 181 172 203	554 316 160.2 45.8	196.3 170.7 149.4 88.1		63.3 17.94 11.11 15.44	66.3 40.6 39.4 51.3	
S Shapes (American Standard Shapes)	Y	\$460 \times 81.4\frac{1}{5310 \times 47.3}\$\$5250 \times 37.8\$\$\$150 \times 18.6\$\$\$	10390 6032 4806 2362	457 305 254 152	152 127 118 84	335 90.7 51.6 9.2	179.6 122.7 103.4 62.2		8.66 3.90 2.83 0.758	29.0 25.4 24.2 17.91	
C Shapes (American Standard Channels) X —	$\frac{Y}{X}$	C310 × 30.8† C250 × 22.8 C200 × 17.1 C150 × 12.2	3929 2897 2181 1548	305 254 203 152	74 65 57 48	53.7 28.1 13.57 5.45	117.1 98.3 79.0 59.4		1.615 0.949 0.549 0.288	20.29 18.11 15.88 13.64	17.73 16.10 14.50 13.00
Angles X	$\frac{1}{\sqrt{y}}X$	L152 × 152 × 25.4‡ L102 × 102 × 12.7 L76 × 76 × 6.4 L152 × 102 × 12.7 L127 × 76 × 12.7 L76 × 51 × 6.4	7100 2420 929 3060 2420 768			14.78 2.31 0.516 7.24 3.93 0.454	45.6 30.9 23.6 48.6 40.3 24.3	47.2 30.0 21.4 50.5 44.5 25.2	14.78 2.31 0.516 2.61 1.074 0.163	45.6 30.9 23.6 29.2 21.1 14.58	47.2 30.0 21.4 25.1 19.05 12.52