Statics Homework Handout 9:

Homework Assignment \#9: 9.49, 9.50, 9.51, 9.54, 9.115, 9.127
9.31 and 9.32 Determine the moment of inertia and the radius of gyration of the shaded area with respect to the x axis.

Fig. P9.31 and P9.33
9.33 and 9.34 Determine the moment of inertia and the radius of gyration of the shaded area with respect to the y axis.
9.49 Two $20-\mathrm{mm}$ steel plates are welded to a rolled S section as shown. Determine the moments of inertia and the radii of gyration of the section with respect to the centroidal x and y axes.

Fig. P9.49
9.50 To form a reinforced box section, two rolled W sections and two plates are welded together. Determine the moments of inertia and the radii of gyration of the combined section with respect to the centroidal axes shown.

Fig. P9.50
9.51 Four $3 \times 3 \times \frac{1}{4}$-in. angles are welded to a rolled W section as shown. Determine the moments of inertia and the radii of gyration of the combined section with respect to its centroidal x and y axes.

Fig. P9.51
9.54 To form an unsymmetrical girder, two $76 \times 76 \times 6.4-\mathrm{mm}$ angles and two $152 \times 102 \times 12.7-\mathrm{mm}$ angles are welded to a $16-\mathrm{mm}$ steel plate as shown. Determine the moments of inertia of the combined section with respect to its centroidal x and y axes.

Fig. P9.54
9.115 A piece of thin, uniform sheet metal is cut to form the machine component shown. Denoting the mass of the component by m, determine its moment of inertia with respect to (a) the x axis, (b) the y axis.

Fig. P9.115 and P9.116
9.117 A thin plate of mass m has the trapezoidal shape shown. Determine the mass moment of inertia of the plate with respect to (a) the x axis, (b) the y axis.

Fig. P9.117 and P9.118
9.127 Shown is the cross section of a molded flat-belt pulley. Determine its moment of inertia and its radius of gyration with respect to the axis $A A^{\prime}$. (The density of brass is $8650 \mathrm{~kg} / \mathrm{m}^{3}$ and the density of the fiberreinforced polycarbonate used is $1250 \mathrm{~kg} / \mathrm{m}^{3}$.)

Fig. P9. 127
9.128 Shown is the cross section of an idler roller. Determine its mass moment of inertia and its radius of gyration with respect to the axis $A A^{\prime}$. (The specific weight of bronze is $0.310 \mathrm{lb} / \mathrm{in}^{3}$; of aluminum, $0.100 \mathrm{lb} / \mathrm{in}^{3}$; and of neoprene, $0.0452 \mathrm{lb} / \mathrm{in}^{3}$.)

Fig. P9. 128

