ME 2210 Dynamics: Working Model Homework 04

Conservation of Linear and Angular Momentum: Problem 14-048 from the Handouts

14.47 Two small spheres A and B, weighing 5 lb and 2 lb , respectively, are connected by a rigid rod of negligible weight. The two spheres are resting on a horizontal, frictionless surface when A is suddenly given the velocity $\mathbf{v}_{0}=(10.5 \mathrm{ft} / \mathrm{s}) \mathbf{i}$. Determine (a) the linear momentum of the system and its angular momentum about its mass center $G,(b)$ the velocities of A and B after the $\operatorname{rod} A B$ has rotated through 180°.
14.48 Solve Prob. 14.47, assuming that it is B which is suddenly given the velocity $\mathbf{v}_{0}=(10.5 \mathrm{ft} / \mathrm{s}) \mathbf{i}$.

Fig. P14.47

Open Working Model. Create the $5-\mathrm{lb}$ sphere by placing a small circle ($\mathrm{r}=0.15 \mathrm{in}$) onto the panel at $x=0$ and $y=0$. Use the Properties Window to change the weight of the circle to 5 lb . Use the drop-down menu near the bottom of the Properties Window to change the circle to a 3D Sphere.

Create the 2-lb sphere ($r=0.15 \mathrm{in}$) in the same manner, and place it at $x=0, y=-7 \mathrm{in}$. Set the initial $x-$ direction velocity to $\mathrm{Vx}=10.5 \mathrm{ft} / \mathrm{s}$.

Create a very thin rectangle ($\mathrm{W}=0.15 \mathrm{in}, \mathrm{H}=7 \mathrm{in}$) using the Rectangle Tool. Change the rectangle to a $3 D$ rod by using the drop-down menu on the Properties Window. Set the location of the rectangle to $x=$ $0, y=-3.5 \mathrm{in}$. Attach the rectangle to the two spheres by using the Pin Joint Tool.

(2) W

Place a graph on the panel to measure the x-direction velocity of sphere A. Right-click on the label of the graph and go to the Appearance Window of the graph. Change the name of the graph to "Velocity of Sphere A".

Place a graph that indicates the velocity of sphere B and change the graph title. Place a graph on the panel to measure the angle of the rod by using the Measure Tab/Position/Rotation Graph. Change the graph title as well.

Run the simulation and note the values. If the simulation runs too quickly, go to the World $\mathrm{Tab} /$ Accuracy and change the Animation Step size. Place your name onto the panel using the Text Tool. Take a screenshot of your simulation and place it in the Dropbox Folder entitled, "myname WM Homework 04. Save your simulation for your records.

Answer:

