
Functional Programming Languages. PLDI’94 Tutorial

64

State in Functional Languages

Criticism of the functional programming paradigm:

• State, and changes of state, occur in the real-world.

• Thus, can’t easily solve real-world problems in a “stateless”
language

• i.e. a language without variables that can be modified

• However, with the addition of modifiable variables,
referential transparency is lost.

There has been much recent work on adding constructs to
functional languages that add the notion of state to functional
programs, but limit the way the state is accessed and updated.

• Referential transparency is preserved.

Functional Programming Languages. PLDI’94 Tutorial

63

A sizeable number of parallel functional programming systems
have been built.

The difficult part of parallel functional programming is finding
the right granularity

• The size (in terms of # of instructions) of the smallest pieces
that the program is decomposed into.

How do you know, given

f x y + g a b

if it is worthwhile computing (f x y) and (g a b) in parallel?

• The cost of spawning the tasks, sending data, etc. might
outweigh any benefits.

• Especially on distributed-memory machines.

There are a number of granularity analyses, but it is still an open
(and undecidable!) problem.

Functional Programming Languages. PLDI’94 Tutorial

62

Parallel Functional Programming

Church-Rosser Theorem I says that all terminating reduction
sequences give the same result.

• Even parallel reduction sequences, where multiple redexes
are reduced simultaneously.

Therefore, functional languages are obvious candidates for
parallel programming.

If there is an expression

f x y + g a b

then we know that (f x y) and (g a b) can be evaluated in parallel.

• Not true in imperative languages, where f and g might
perform side-effects that affect each other.

Likewise, in a strict functional language,

f(e1, e2, e3)

could be evaluated by computed e1, e2, and e3 in parallel.

In a non-strict functional language, strictness analysis can be
used.

• The strict arguments can be computed in parallel.

Functional Programming Languages. PLDI’94 Tutorial

61

Formal definition of strictness: A function f of the form

f x1 ... xn = e

is strict in its ith argument if, for all values yj ,

f y1 ... y(i-1) ⊥ y(i+1) ... yn = ⊥

where ⊥ denotes non-termination. That is, if the ith argument to
the function doesn’t terminate, then the function call won’t
either. Intuitively, this means that the function always needs the
value of the ith argument.

Not quite, though:

f x y = if x = 0 then y else f (x-1) y

is strict in its second argument, even though it may never access
it. That is, if y doesn’t terminate, then either the call to f won’t
terminate because y is accessed or it won’t terminate because the
recursion never ends.

• Either way, f v ⊥ = ⊥ , for all possible values of v.

Strictness Analysis is quite well understood now. It typically uses
an analysis framework called Abstract Interpretation.

• Has been used to determine the strictness of higher-order
functions, and for arguments that are aggregate structures
(such as lists).

Functional Programming Languages. PLDI’94 Tutorial

60

Research Issues in Functional Languages

Strictness Analysis

The advantage of using a lazy functional language is that an
unneeded argument is never evaluated.

• Delaying the evaluation of the argument incurs some
overhead, though.

What if the argument is always going to be needed?

• i.e. if the function is “strict” in its argument.

Compiler Optimization:

• Transform call-by-need into call-by-value

• That is, go ahead and evaluate the argument first.

Strictness Analysis determines when this is safe to do.

Functional Programming Languages. PLDI’94 Tutorial

59

List Comprehensions in Haskell

These are concise expressions for constructing entire lists

• Resembles set notation in mathematics

The expression

[f x | x <- xs]

computes the list of all (f x) such that x is taken from the list xs.

List comprehensions can also include guards:

quicksort [] = []
quicksort(x:xs) = quicksort [y | y <- xs, y<x]

++ [x]
++ quicksort [y | y <- xs, y>=x]

Functional Programming Languages. PLDI’94 Tutorial

58

Here is a diagram of the hierachy of Haskell predefined classes

Eq

Ord

Ix
Enum

Real

Num

Text Binary

Fractional

Integral RealFrac Floating

RealFloat

Functional Programming Languages. PLDI’94 Tutorial

57

Default Methods

A class can give a default definition for an operation

class Eq a where
(==) :: a -> a -> Bool
x /= y = not (x == y)

Any instance declaration not providing a definition of /= would
use the one above.

Class Inclusion

Haskell provides class inclusion, a form of inheritance

• One class definition can be used to define another one.

For example,

class (Eq a) => Ord a where
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

defines the class of ordered types in terms of the class of equality
types.

• Eq is a superclass of Ord

• Ord is a subclass of Eq

Functional Programming Languages. PLDI’94 Tutorial

56

User-define type constructors

Like ML, Haskell has type constructors parameterized by type
variables.

data Tree a = Leaf a | Node (Tree a) (Tree a)

Could the following instance declaration be used to declare Tree
an instance of Eq?

instance Eq (Tree a) where
Leaf x == Leaf y = x == y
(Node l1 r1) == (Node l2 r2) = l1 == l2 && r1 == r2
_ == _ = False

No! The types of x and y might not be in class Eq, thus == might
not be defined on them.

Solution: Need a context in the instance declaration

instance (Eq a) => Eq (Tree a) where
Leaf x == Leaf y = x == y
(Node l1 r1) == (Node l2 r2) = l1 == l2 && r1 == r2
_ == _ = False

This says that if a type a is an instance of Eq, then so is (Tree a).

Functional Programming Languages. PLDI’94 Tutorial

55

User Defined Types

New types in Haskell are defined using the data construct.

• Almost identical to ML’s datatype

data IntTree = Leaf Int | Node IntTree IntTree

Declaring a Type to be an Instance of a Class

To declare a type to be an instance of a class, the definitions of the
required operations must be provided.

• For example, class EQ requires the == operation to be
defined.

Instance Declaration:

instance Eq IntTree where
Leaf x == Leaf y = x == y
(Node l1 r1) == (Node l2 r2) = l1 == l2 && r1 == r2
_ == _ = False

Now IntTree can be passed to any function expecting a type in
class Eq.

• There are a large number of predefined types in class Eq.

Functional Programming Languages. PLDI’94 Tutorial

54

One can then write a polymorphic function that uses ==

f :: (Eq a) => a -> a -> Int
f x y = if x == y then 1 else 2

• The (Eq a) is called a context.

• The type of f, written above its definition, is

∀ α in class Eq. α→ α → Int

Functional Programming Languages. PLDI’94 Tutorial

53

You would like to say that f is of type

∀ α for which + is defined. α→ α → α

• Of course, + may be very different for the different types that
it is defined on.

• When f is called, the choice of which + to use in the body of f
depends on the arguments passed in, and must be determined
dynamically.

• this is called dynamic overloading.

Haskell’s type classes support dynamic overloading.

A type class specifies what operations a type must support.

• Types are then declared to be instances of that class.

For example, the Equality class, Eq, defined by

class Eq a where
(==) :: a -> a -> Bool

specifies that any type a in class Eq must provide a definition for
the infix == operator of type a -> a -> Bool.

Functional Programming Languages. PLDI’94 Tutorial

52

The Haskell Class system

Overloading: Giving the same name to distinct entities in a
program.

• Ada: Two or more functions can share the same name.

• Function calls are disambiguated by the types of the
arguments and the result type.

• Overload resolution occurs at compile type, hence is called
static overloading.

Mixing static overloading and parametric polymorphism can
cause trouble.

Consider the following definition in ML:

fun f x y = x + y

this is a type error!

• The overloading of + cannot be resolved.

• x and y are either integers or reals, but you can’t tell which.

• f is clearly not of type ‘a -> ‘a -> ‘a

Functional Programming Languages. PLDI’94 Tutorial

51

Haskell

• Modern non-strict functional language

• normal order semantics (“demand driven” evaluation)

• extends ML’s type system for dynamic overloading

The syntax of Haskell differs somewhat from ML, but has a
similar look.

A few important syntactic differences:

• Identifiers representing specific types and value constructors
are capitalized. Identifiers representing type variables and
values are not capitalized.

• Definitions do not begin with a keyword (ML uses val or fun)

• ML and Haskell exchanged their uses of : and ::

• Indentation can be used to begin and end new blocks.

let y = a * b
f x = (x+y)/y

in
f c + f d

Functional Programming Languages. PLDI’94 Tutorial

50

Given

 fun sumstream s 0 = 0
 | sumstream s n = hd s + sumstream (tl s) (n-1)

the evaluation of

 sumstream (numsfrom 1) 10

would cause the first 10 elements of the stream to be computed.

The section of code producing the stream does not need to know
how much of the stream to evaluate. That is done on demand.

Typical stream-based program: The infinite list of primes

let
fun numsfrom n = n :: numsfrom (n+1)
fun filter f (x::xs) = if f x then x :: filter f xs

else filter f xs
fun remove-mults (x :: xs) =

let
fun is-mult n = (n mod x) <> 0

in
x :: remove-mults (filter is-mult xs)

end
in

remove-mults (numsfrom 2)

end

Functional Programming Languages. PLDI’94 Tutorial

49

Allows use of infinite data structures!

cons (::) does not evaluate its arguments. They will be evaluated
when their value is demanded by hd and tl.

For example,

let
fun numsfrom n = n :: numsfrom (n+1)

in
numsfrom 1

end

would never terminate (until it ran out of memory) in ML.

In a non-strict language, the result of this expression would be a
list whose head is 1 and whose tail is the delayed value of
numsfrom (n+1)

The value of the above let expression is the infinite list [1,2,3, ...]

• These infinite, but delayed, lists are generally called streams.

Functional Programming Languages. PLDI’94 Tutorial

48

What is the practical benefit?

 Frees programmers from worrying about some control issues:

• “How much of this result should I compute”

• “What is the best order for the results to be computed in”

• “I’m not sure I’ll need this value, but I’ll compute in anyway
just in case”

Example: Attribute Grammars with Synthesized and Inherited
Attributes.

• “How do I get the data dependencies right?”

Functional Programming Languages. PLDI’94 Tutorial

47

Another disadvantage of non-strict languages:

• Overhead cost of building object to represent delayed actual
parameter.

• may be a “thunk” (parameterless procedure) that will be
called when the formal parameter is referenced.

• may be a graph representing the delayed expression (in
systems which use “graph reduction” to implement the
graphical form of β-reduction.

The theoretical property of normal order evaluation is nice:

• Most likely reduction order to terminate

But, we’ve managed to live with applicative order languages for
a long time, and non-termination is seldom a concern in correct
programs.

Functional Programming Languages. PLDI’94 Tutorial

46

Implementation Solution: Lazy Evaluation

• Also referred to as “call by need”

Instead of replicating the actual parameter for each occurrence of
the formal parameter, have each occurrence of the formal
parameter point to the actual.

When the actual is evaluated, overwrite it with the result.

Thus, the actual is only evaluated once. Subsequent references to
the formal simply retrieve the computed value.

• β−reduction becomes primarily graph manipulation, rather
than textual manipulation.

((λx. (+ x x)) (+ 3 2)) ⇒ β (+) (+ 3 2))

⇒ β (+) 5

Functional Programming Languages. PLDI’94 Tutorial

45

Non-Strict Functional Languages

Normal order reduction in the lambda calculus, revisited:

Advantages:

• Most likely evaluation order to terminate

• Doesn’t evaluate parameters that aren’t needed.

Disadvantage: Consider

((λx. (+ x x)) (+ 3 2)) ⇒ β (+ (+ 3 2) (+ 3 2))

⇒ δ (+ 5 (+ 3 2))

⇒ δ (+ 5 5)

⇒ δ 10

Duplication of effort, due to textual substitution of each
occurrence of the formal parameter with the actual parameter.

• notice resemblance to call by name in Algol60

Functional Programming Languages. PLDI’94 Tutorial

44

ML References

A non-functional component of the language

• Provides aliasing and assignment (think “pointer”)

let val x = ref 6 (* x points to cell containing 6 *)
val y = x (* y points to same cell as x *)
x := 7 (* cell is modified to contain 7 *)

in
!y (* returns 7 *)

end (* ! is dereference operator *)

An ML program without the use of references is a purely
functional program (ignoring issues of I/O).

Functional Programming Languages. PLDI’94 Tutorial

43

Nullary value constructors are an example of polymorphic
non-function values

empty: ‘a tree

Polymorphic functions work well with type constructors:

fun fringe empty = []
 | fringe (leaf x) = [x]
 | fringe (node (t1,t2)) = fringe t1 @ fringe t2

has type ‘a tree -> ‘a list.

Functional Programming Languages. PLDI’94 Tutorial

42

Type Constructors

Type variables can also be used to parameterize datatype
declarations.

Before, we defined a tree type with integer labels at the leaves:

datatype tree = empty | leaf of int | node of tree * tree

Instead, we can say

datatype ‘a tree = empty | leaf of ‘a | node of (‘a tree * ‘a tree)

allowing many different types of trees to be created. In this case,
tree is a type constructor, because it takes a parameter and
constructs a new type (at compile time, of course).

node (leaf 3.2, empty) : real tree

node (leaf [3,4,5], leaf [4,5,6]]) : int list tree

The type variable ‘a can only be instantiated a one way within a
single type, so

node (leaf 4, leaf true)

is a type error.

Functional Programming Languages. PLDI’94 Tutorial

41

In order to support type inference, there is a restriction that must
be followed:

• Formal parameters in a function definition must be used
monomorphically within the function.

 That is, all occurrences of the formal parameter must have the
same type.

fun f g = g 3 + g 4 + 2

This is fine. All uses of g are of type int -> int -> int

fun h g = (g 3.2, g true)

This is a type error, due to the application of g to arguments of
different types.

Functional Programming Languages. PLDI’94 Tutorial

40

Polymorphic Type Inference

Notice that we never specified the types of functions or variables
that we declared.

• The ML compiler figures out their types by the way they are
used.

This is called type inference. The ML type system, based on work
by Hindley, Milner, and others, is designed so that type inference
can be performed.

• The type it infers for an object is always the most general
possible type, allowing it to be used as polymorphically as
possible.

fun map f [] = []
 | map f (x::xs) = f x :: map f xs

α α list β listβα→β

Functional Programming Languages. PLDI’94 Tutorial

39

• This kind of polymorphism is called parametric polymorphism.

• In some theoretical type models, the type variable is
written as a formal parameter in a polymorphic definition.

Here is another example of a polymorphic function:

let
fun map f [] = []
 | map f (x::xs) = f x :: map f xs

in
(map (fn n => n+1) [1,2,3]) @
(map (fn l => length l) [[2.2, 3.3],[4.4]])

end

where map has type

 (‘a -> ‘b) -> ‘a list -> ‘b list

and the result of the entire expression is [2,3,4,2,1].

Functional Programming Languages. PLDI’94 Tutorial

38

Type Variables and Parametric Polymorphism

Consider the length function again:

fun length [] = 0
 | length (x::xs) = 1 + length xs

What is its type?

• It can take a list of any type and returns an int.

That is, its type is

∀α . α list -> int

• In ML, this type is written

 ‘a -> int

where the ‘ signifies that the a is a universally quantified type
variable (rather than a type named a).

• Thus, length can take many different types of arguments (an
infinite number, in theory). We say that length is polymorphic
(“many shaped”).

 length [1,2,3] + length [[4,5],[6]] + length [true, false, true]

• Any object whose type contains a type variable is
polymorphic. All others are said to be monomorphic.

Functional Programming Languages. PLDI’94 Tutorial

37

The expression

node (node (leaf 5, node (leaf 6, empty)),(leaf 7))

constructs the tree

Value constructors can be used in patterns:

fun drive red = “stop”
 | drive green = “go”
 | drive yellow = “accelerate”

The patterns can be used to select out the arguments to the value
constructors

fun fringe empty = []
 | fringe (leaf x) = [x]
 | fringe (node (t1,t2)) = fringe t1 @ fringe t2

So

fringe (node (node (leaf 5, node (leaf 6, empty)),(leaf 7)))

would return [5,6,7]

5

6

7

Functional Programming Languages. PLDI’94 Tutorial

36

New types

Defined using the datatype construct.

In its simplest form, like an enumerated type in Pascal or Ada.

datatype stoplight = red | green | yellow

defines a new type stoplight whose values are red, green, and
yellow.

In the more general form, the elements of an ML datatype can be
value constructors, which can take a parameter.

datatype tree = empty | leaf of int | node of tree * tree

Here, leaf is a value constructor taking an integer parameter and
node is a value constructor taking a tuple of two trees.

• They are called value constructors because, when applied to
their argument, they construct a value (of type tree in this
case).

• The values red, green, and yellow above are simply nullary
value constructors.

Functional Programming Languages. PLDI’94 Tutorial

35

User-defined types in ML

Type Synonyms

type <name> = <type expr>

introduces a new name for the type described by <type expr>

• It does not create new type, just a synonym for an existing one.

• Examples:

 type foo = int * bool * real

 type bar = string

Functional Programming Languages. PLDI’94 Tutorial

34

ML Patterns

Standard ML has a pattern matching facility to support

• An equational style for function definitions

• Selecting components of aggregate values

Equational Style

fun fac 0 = 1
 | fac n = n * fac (n-1)

Selecting Components of Aggregate Values

val (x,y) = (3.4, 5)

introduces the variables x and y, and

fun length [] = 0
 | length (x::xs) = 1 + length xs

binds x to the head of the argument and xs to the tail.

Functional Programming Languages. PLDI’94 Tutorial

33

For efficiency when currying isn’t needed, it is common practice
to define a function as taking a single tuple as a parameter.

let fun f(x,y) = x + y + 1
in f(3,4) + f(5,6)
end

In this case f has type

int * int -> int

Functional Programming Languages. PLDI’94 Tutorial

32

All ML functions take a single parameter.

The declaration

fun f x y = x + y + 1

is equivalent to

fun f x = fn y => x + y + 1

and thus can be used in

let fun f x y = x + y + 1
val g = f 2

in
g 3 + g 4

end

Such function definitions are called curried definitions (after the
logician Haskell Curry).

The function f above has the type

 int -> int -> int

Functional Programming Languages. PLDI’94 Tutorial

31

Recursive functions can only be defined using fun

• or a seldom-used form: val rec f = fn x =>...

Mutually recursive functions are defined using the and keyword:

fun f x y = if x = 0 then y
else g (x-1) (y+2)

and
g a b = f a (b* 2)

Functional Programming Languages. PLDI’94 Tutorial

30

Function expressions (i.e. lambda abstractions)

 fn x => x + 1

 fn a => fn b => a + b

=> is right associative

Let expressions

let <declaration1>
<declaration2>
 . . .
<declarationN>

in
<exp>

end

where each <declaration> introduces a new name and gives it
a value.

For example

let val x = 6
val g = fn z => z + 2
fun fac n = if n = 0 then 1 else n * fac (n-1)

in
fac (g x)

end

introduces the new names x, g, and fac whose scope ranges from
where they are introduced up to the end keyword.

Functional Programming Languages. PLDI’94 Tutorial

29

List construction and selection (similar to LISP):

• All elements of a list must be of the same type.

Cons

x::xs

forms the list whose first element is x and the other elements
come from the list xs.

 3::[4,5]

returns [3,4,5]

Append

xs @ ys

forms the list consisting of the elements of both xs and ys

[3,4,5] @ [6,7,8]

returns [3,4,5,6,7,8]

Head, Tail:

hd [3,4,5]

returns 3

 tl [3,4,5]

returns [4,5]

Functional Programming Languages. PLDI’94 Tutorial

28

• There are also type variables - deferred until polymorphism
discussion.

Expressions

Arithmetic

x+y

3*2

Logical

a=3

4 > b

c andalso (d = 6)

Conditional

if z = 0 then 1 else f 6

Function Application

 f 3

(g 4) 5

g 4 5
equivalent

Functional Programming Languages. PLDI’94 Tutorial

27

Standard ML.

• Strict functional language (applicative order reduction)

• Statically typed.

Primitive Types

int, real, bool, string, unit (a type with one value, ())

Aggregate Types

 lists

 [1,2,3] : int list

 [true, false, true] : bool list

 [[3.2, 4.5],[2.1]] : real list list

 tuples

 (true, 3, [4.2]) : bool * int * real list

 records

 {a=3,b=3.2, c=”hello”} : {a:int,b:real,c:string}

Function Types

int -> bool real -> real-> bool-> bool

-> is right associative

Functional Programming Languages. PLDI’94 Tutorial

26

Referential Transparency

In functional languages, as in mathematics, there is no notion of
a variable being modified.

• No assignment statement. The equation

 x = x + 1

has no solution in mathematics.

The lack of assignment (“side-effect”) leads to the notion of
referential transparency

• “equals can be replaced by equals”

If we say

let x = f(a)
in ... x + x ...

then we can be sure that the meaning of x + x is the same as

f(a) + f(a).

 Assuming there is no intervening declaration of a new x.

Pragmatically, this is beneficial for understanding and debugging
code. We simply need to look at the declaration of a variable to
understand its behavior.

Functional Programming Languages. PLDI’94 Tutorial

25

This is attractive for philosophical reasons,

• functions are values, thus should be treated like any other
value

and for pragmatic reasons.

• gives an additional mechanism of abstraction.

fun quadrature(f, x, end, interval) =
if x = end then 0
else ((f(left) + f(x+interval))/2) * interval +

quadrature(f, x+interval, end, interval)

In languages without higher-order functions (or generics), you
would have to write a different quadrature routine for each
function.

Functional Programming Languages. PLDI’94 Tutorial

24

Higher Order Functions

One of the elegant features of the Lambda calculus is that
functions (lambda abstractions) are values. This leads to the
notion of higher order functions

• functions that manipulate other functions

Functions in functional languages (as in the lambda calculus) are
first class objects, they can be

• passed as parameters to other functions,

• returned as results of function calls, and

• stored in aggregates.

Functional Programming Languages. PLDI’94 Tutorial

23

Church showed that the lambda calculus is a consistent
mathematical system.

• Scott and Strachey (and others) gave a mathematical
semantics to the lambda calculus, showing that lambda
abstractions do indeed denote values in domains of functions.

• Non-trivial result, since self-application cannot be described
representing functions the traditional way as sets.

Modern functional languages are essentially the lambda calculus
(in some cases, a typed version) with nicer syntax!

• Thus, the simplicity, consistency, Church-Rosser theorems,
etc. all come along for free!

Functional Programming Languages. PLDI’94 Tutorial

22

But, hey!, the Y combinator was defined recursively!

• No, Y is just

(λh. ((λx. (h (x x))) (λx.(h (x x))))

• To see this, for any expression e,

Y e = (λh. ((λx. (h (x x))) (λx.(h (x x)))) e

⇒ ((λx.(e (x x))) (λx. (e (x x))))

⇒ (e ((λx. (e (x x))) (λx. (e (x x))))) ⇔ e (Y e)

Functional Programming Languages. PLDI’94 Tutorial

21

Why is this useful? Because now fac can be written as

Y (λfac. λx. (if (= x 0) 1 (* x (fac (- x 1)))))

• To see that this has the desired behavior, let

F = λfac. λx. (if (= x 0) 1 (* x (fac (- x 1))))

• Notice that

(Y F) 3 ⇒∗ Y (λfac. λx. (if (= x 0) 1 (* x (fac (- x 1))))) 3

⇒∗ (λfac. λx. (if (= x 0) 1 (* x (fac (- x 1))))) (Y F) 3

⇒∗ (λx. (if (= x 0) 1 (* x ((Y F) (- x 1))))) 3

⇒∗ (* 3 ((Y F) 2))

⇒∗ . . .

• In general, if you want to write a recursive function of the
form

 f = λx. e

where f occurs free in e, write it in the lambda calculus as

 Y (λf. λx. body)

Functional Programming Languages. PLDI’94 Tutorial

20

Recursion in the lambda calculus

It appears impossible to define recursion functions, since the
functions aren’t named.

• Can’t write

 fac = λx. (if (= x 0) 1 (* x (fac (- x 1))))

• So what can we do?

First, some terminology:

• The fixpoint of a function f is the value e such that

 f e = e

• For recursion in the lambda calculus, on can use the fixpoint
combinator Y, defined as

 Y f = f (Y f)

• For any function f, (Y f) computes f’s fixpoint.

Functional Programming Languages. PLDI’94 Tutorial

19

But, here is the first data point:

Church Rosser Theorem II
If e1 ⇒∗ e2 and e2 is in normal form, then there exists a
normal-order reduction from e1 to e2.

This says that if any reduction sequence terminates, then normal
order reduction will.

• normal order reduction is the most likely to terminate!

Functional Programming Languages. PLDI’94 Tutorial

18

Common Evaluation Orders

• Applicative order evaluation: reduce the leftmost innermost
redex first.

• intuitively, evaluate the arguments first

• used by most programming languages, including “strict”
functional languages

• Normal Order evaluation: reduce the leftmost outermost redex
first.

• intuitively, evaluate the body of the function first and the
arguments when necessary.

• used by “non-strict” functional languages

Which is better? Well... stay tuned!

Functional Programming Languages. PLDI’94 Tutorial

17

Can two terminating reductions give different answers?

Church-Rosser Theorem I
If e1 ⇔∗ e2 then there exists an e3 such that e1 ⇒∗ e3 and
e2 ⇒∗ e3

Corollary
No lambda expression can be converted to two distinct
normal forms.

• So, all terminating reduction sequences give the same answer

e

e2e1

e3

Functional Programming Languages. PLDI’94 Tutorial

16

Does the order in which redexes are chosen matter?

Sure!

Consider

Reducing the outer redex first gives us

 3

Reducing the inner redex first gives us

(λy. 3) ((λx. (x x)) (λx. (x x)))⇒ β (λy. 3) ((λx. (x x)) (λx. (x x)))

⇒ β . . .

The reduction of the argument never terminates, but its value
isn’t needed.

• In this case, one reduction order terminated and the other
didn’t.

(λy. 3) ((λx. (x x)) (λx. (x x)))

outer redex

inner redex

Functional Programming Languages. PLDI’94 Tutorial

15

Reduction Order

• An expression may contain several reducible expressions,
called redexes. For example,

can be reduced to

(+ (+ 3 2) (+ 3 2))

by reducing the outer redex first, or to

((λx. + x x) 5)

by reducing the inner redex first.

• In general, there may be many redexes to choose from.

((λx. (+ x x)) (+ 3 2))

outer redex

inner redex

Functional Programming Languages. PLDI’94 Tutorial

14

We model computation as the process of taking an expression and
reducing it as far as possible, to a normal form

• An expression that cannot be reduced further

Not all expressions can be reduced to a normal form.

 (λx. (x x)) (λx. (x x))

has no normal form:

(λx. (x x)) (λx. (x x)) ⇒ β(λx. (x x)) (λx. (x x))

⇒ β ...

Functional Programming Languages. PLDI’94 Tutorial

13

We write

 e1 ⇔∗ e2

if e1 and e2 can be converted to one another by zero or more
applications of the conversion rules (i.e. the reflexive transitive
closure).

Although conversion is both ways (⇔ above) we are mainly
interested in β-, δ−, and η-reduction, in which the conversion is
only ⇒.

• β−Reduction

(λx.e) M ⇒ β e[M/x]

• η−Reduction

λx.(e x) ⇒ η e where x∉ fv(e)

Similarly

e1 ⇒∗ e2

denotes the reduction of e1 to e2 by zero or more applications of
the reduction rules.

Functional Programming Languages. PLDI’94 Tutorial

12

Conversions between Lambda Expressions

• α-conversion (renaming of bound variables)

λx.e ⇔α λy.e[y/x] where y∉ fv(e)

• β-conversion (application)

 (λx.e) M ⇔β e[M/x]

• η-conversion

λx.(e x) ⇔η e where x∉ fv(e)

For the pre-defined operators, there are conversions, called
δ-conversions, between an application of the operator and the
result. For example,

 (+ 1 2) ⇔δ 3

(if true e1 e2) ⇔δ e1

(if false e1 e2) ⇔δ e2

Functional Programming Languages. PLDI’94 Tutorial

11

Computation is modeled by conversions using textual substitution
on lambda expressions.

Free variables and substitution

• Intuitively, the free variables in an expression are the “non-
local” variables.

• The free variables of an expression are defined as follows:

 fv(x) = {x}

 fv(e1 e2) = fv(e1) ∪ fv(e2)

 fv(λx.e) = fv(e) − {x}

The notation e[M/x] denotes the result replacing all free
occurrences of the variable x with the expression M in e.

• One has to be careful, though, to avoid name conflicts.

 x[M/x] = M

 y[M/x] = y where y is a variable, y ≠ x

(e1 e2) [M/x] = (e1[M/x]) (e2[M/x])

(λx.e) [M/x] = λx.e

(λy.e) [M/x] = λy.(e[M/x]) where y ≠ x, y ∉ fv(M)

(λy.e) [M/x] = (λz.e[z/y]) [M/x] otherwise,

where z≠y, z ≠ x, z ∉ (fv(e) ∪ fv(M))

Functional Programming Languages. PLDI’94 Tutorial

10

The Lambda Calculus

We’ll only be talking about the untyped lambda calculus
augmented with constants - there are many others versions.

• Just a set of rules describing what constitutes a legal
expression and conversions between expressions.

Lambda Expressions

e ::= c constant (including operators +, -, if, etc.)
| x variable
| e1 e2 application
| λx.e lambda abstraction (models functions)

Application is left associative, so

 (e1 e2 e3)

is equivalent to

((e1 e2) e3)

Examples:

(λx. + x x)

(λx.x x) (λy. y y)

(+ ((λx. + x 3) 4) 5)

Functional Programming Languages. PLDI’94 Tutorial

9

The two recent functional languages generating the most interest:

Standard ML (Milner and others 1982 - present)

• strict functional language (+ non-functional “references”)

• descendent of ML (added pattern matching, for instance)

• parametric polymorphic type system with type inference

• several implementations available

Haskell (by committee 1987- present)

• non-strict functional language

• extension of polymorphic type system with dynamic
overloading based on classes

• several implementations also available

But first....

Functional Programming Languages. PLDI’94 Tutorial

8

SASL, KRC, MIRANDA (Turner, mid-70’s to mid-80’s)

• Non-strict functional languages

• Had great impact on the “standardized” lazy functional
language, Haskell.

• Miranda is one of the few commercially available functional
languages.

Dataflow languages

• Languages for programming dataflow (parallel) machines

• Val (Dennis, late 1970’s),

• SISL (McGraw, 1980s),

• ID (Arvind, late 1970’s)

• many dialects of ID since!

Others

• HOPE, FEL, ALFL, LML (Lazy ML), Ponder, Orwell, . . .

Functional Programming Languages. PLDI’94 Tutorial

7

FP (Backus, 1970’s)

• Described in Backus’s 1978 Turing Award Lecture,

• received great attention from, and had great influence on, the
programming languages community

• Syntax and higher-order combining forms (fixed, limited
number) similar to APL (Iverson, 1960’s).

• Backus actually argued that user-defined higher order
functions would lead to too much complexity (he used the
term “chaos”).

ML (Milner mid-70’s)

• Strict functional language (includes a non-functional
component, references)

• Supported higher-order functions with currying

• Static polymorphic type system with type inference

• Originally designed as the command language (hence
metalanguage) for LCF, a proof system for reasoning about
recursive functions.

Functional Programming Languages. PLDI’94 Tutorial

6

LISP (McCarthy, late 1950’s)

• First popular programming language to (attempt to)
represent functions as values.

• Adopted some syntax from the lambda calculus, but,
according to McCarthy, was not influenced greatly by the
lambda calculus.

• Scheme (Steele & Sussman’75), a relatively recent dialect of
LISP, has a purely functional subset (i.e. the subset without
SET! and other side-effect operators).

ISWIM (Landin, mid-1960’s)

• syntax for mutually recursive function definitions

• emphasis on equational reasoning

• simple abstract machine (the SECD machine) for executing

• functional programs

Functional Programming Languages. PLDI’94 Tutorial

5

The History of Functional Languages

The Lambda calculus (Church, 1930’s)

• Still the most important influence, forms the foundation of
functional languages.

• Functional languages can be thought of as the lambda
calculus (in various forms) with a lot of syntactic sugar.

• A simple calculus for modeling computation

• Syntactic rules for creating expressions and converting them
into other expressions.

• Not intended to be a programming language.

• predated computers!

Functional Programming Languages. PLDI’94 Tutorial

4

• Supports functions as values - greater abstraction
mechanisms.

• Very flexible (and in most case, static) type systems.

• Some FL’s exhibit non-strict semantics for greater
independence from order of evaluation issues and infinite
data structures.

• Not an inherently sequential computation model, in fact,
implicitly parallel.

Functional Programming Languages. PLDI’94 Tutorial

3

What is it about functional languages that makes this so?

• Declarative Language (describes what is to be computed,
rather than how)

fun fac(0) = 1
 | fac(x) = x * fac(x-1)

vs. (imperative)

j := 0;
for i := 1 to x do

j := j * i;

• Firm mathematical foundation

• the lambda calculus

• denotational semantics

• Higher-level, more mathematical, notation

• Provides referential transparency, due to the absence of side-
effects (i.e. assignment)

• Supports equational reasoning

Functional Programming Languages. PLDI’94 Tutorial

2

Why use Functional Languages?

Adherents Claim:

• Faster production of software

• Shorter programs

• More readable code

• Code more easily verified (formally or informally)

• More appropriate for parallel computing (research issue)

Functional Programming Languages. PLDI’94 Tutorial

1

Functional Programming Languages

Benjamin Goldberg

Department of Computer Science
New York University

goldberg@cs.nyu.edu

λ

