

Lecture Outline

- Implementation of parsers
- Two approaches
- Top-down
- Bottom-up
- Top-Down
- Easier to understand and program manually
- Bottom-Up
- More powerful and used by most parser generators

Intro to Top-Down Parsing

- The parse tree is constructed
- From the top
- From left to right
- Terminals are seen in order of appearance in the token stream:

$$
t_{2} t_{5} t_{6} t_{8} t_{9}
$$

Recursive Descent Parsing

- Consider the grammar

$$
\begin{aligned}
& E \rightarrow T+E \mid T \\
& T \rightarrow(E) \mid \text { int |int* } T
\end{aligned}
$$

- Token stream is: int_{5} * int_{2}
- Start with top-level non-terminal E
- Try the rules for E in order

Recursive Descent Parsing. Example (Cont.)

- Try $E_{0} \rightarrow T_{1}+E_{2}$
- Then try a rule for $T_{1} \rightarrow\left(E_{3}\right)$
- But (does not match input token int ${ }_{5}$
- Try $\mathrm{T}_{1} \rightarrow$ int. Token matches.
- But + after T_{1} does not match input token *
- Try $\mathrm{T}_{1} \rightarrow$ int ${ }^{*} \mathrm{~T}_{2}$
- This will match but + after T_{1} will be unmatched
- Has exhausted the choices for T_{1}
- Backtrack to choice for E_{0}

Recursive Descent Parsing. Example (Cont.)

- Try $E_{0} \rightarrow T_{1}$
- Follow same steps as before for T_{1}
- And succeed with $T_{1} \rightarrow$ int * T_{2} and $T_{2} \rightarrow$ int
- With the following parse tree

A Recursive Descent Parser. Preliminaries

- Let TOKEN be the type of tokens
- Special tokens INT, OPEN, CLOSE, PLUS, TIMES
- Let the global next point to the next token

A Recursive Descent Parser (2)

- Define boolean functions that check the token string for a match of
- A given token terminal
bool term(TOKEN tok) \{return *next++ == tok; \}
- A given production of S (the $\mathrm{n}^{\text {th }}$)
bool $\mathrm{S}_{\mathrm{n}}()\{\ldots\}$
- Any production of S : bool $S()\{\ldots\}$
- These functions advance next

A Recursive Descent Parser (3)

- For production $E \rightarrow T+E$ bool $E_{1}()$ \{return $T()$ \&\& term(PLUS) \& \& $E()$; \}
- For production $E \rightarrow T$
bool $E_{2}()$ \{ return $T()$; \}
For all productions of E (with backtracking)
bool E() \{
TOKEN *save = next;
return (next = save, $\mathrm{E}_{1}()$)
|| (next = save, $\left.\left.E_{2}()\right) ; \quad\right\}$

A Recursive Descent Parser (4)

- Functions for non-terminal T
bool $T_{1}()$ \{ return term(OPEN) \&\& E() \&\& term(CLOSE); \}
bool $T_{2}()$ \{return term(INT) \&\& term(TIMES) \&\& $\left.T() ;\right\}$ bool $\mathrm{T}_{3}()$ \{return term(INT); \}
bool T() \{
TOKEN *save = next;
return (next = save, $\mathrm{T}_{1}()$)
|| (next = save, $\left.\mathrm{T}_{2}()\right)$
|| (next = save, $\left.\mathrm{T}_{3}()\right)$; \}

Recursive Descent Parsing. Notes.

- To start the parser
- Initialize next to point to first token
- Invoke E()
- Notice how this simulates our previous example.
- Easy to implement by hand
- But does not always work ...

When Recursive Descent Does Not Work

- Consider a production $S \rightarrow S$ a
bool $\mathrm{S}_{1}()$ \{ return S() \& \& term(a); \}
bool $S()$ \{ return $S_{1}()$; \}
- $S()$ will get into an infinite loop
- A left-recursive grammar has a non-terminal S
$S \rightarrow+{ }^{+} \alpha$ for some α
- Recursive descent does not work in such cases.

Elimination of Left Recursion

- Consider the left-recursive grammar

$$
S \rightarrow S \alpha \mid \beta
$$

- S generates all strings starting with a β and followed by a number of α

$$
\beta \alpha *
$$

- Can rewrite using right-recursion

$$
\begin{aligned}
& S \rightarrow \beta S^{\prime} \\
& S^{\prime} \rightarrow \alpha S^{\prime} \mid \varepsilon
\end{aligned}
$$

More Elimination of Left-Recursion

- In general

$$
S \rightarrow S \alpha_{1}|\ldots| S \alpha_{n}\left|\beta_{1}\right| \ldots \mid \beta_{m}
$$

- All strings derived from S start with one of $\beta_{1}, \ldots, \beta_{m}$ and continue with several instances of $\alpha_{1}, \ldots, \alpha_{n}$
- Rewrite as

$$
\begin{aligned}
& S \rightarrow \beta_{1} S^{\prime}|\ldots| \beta_{m} S^{\prime} \\
& S^{\prime} \rightarrow \alpha_{1} S^{\prime}|\ldots| \alpha_{n} S^{\prime} \mid \varepsilon
\end{aligned}
$$

General Left Recursion

- The grammar

$$
\begin{aligned}
& S \rightarrow A \alpha \mid \delta \\
& A \rightarrow S \beta
\end{aligned}
$$

is also left-recursive because

$$
S \rightarrow+S \beta \alpha
$$

- This left-recursion can also be eliminated.
- More examples on the following slides.

Summary of Recursive Descent

- Simple and general parsing strategy
- Left-recursion must be eliminated first
- ... but that can be done automatically
- Unpopular because of backtracking
- Thought to be too inefficient
- Cf. Prolog execution strategy
- In practice, backtracking is eliminated by restricting the grammar
- To enable "look-before-you-leap" strategy

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use.
- By looking at the next few tokens.
- No backtracking.
- Predictive parsers accept $L L(k)$ grammars.
- L means "left-to-right" scan of input.
- L means "leftmost derivation".
- k means "predict based on k tokens of lookahead".
- In practice, LL(1) is used.
- LL(k) grammars
- LR(k) grammars
- L means "left-to-right" scan of input
- R means "rightmost derivation"
- k means "predict based on k tokens of lookahead"
- RL(1) grammars
- R means "right-to-left" scan of input
- LR(0) , LR(1) grammars
- SLR(1) grammars, LALR(1) grammars

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of production.
- LL(1) means that for each non-terminal and token there is only one production.
- Can be specified via 2D tables.
- One dimension for current non-terminal to expand.
- One dimension for next token.
- A table entry contains one production.

Predictive Parsing and Left Factoring

- Recall the grammar

$$
\begin{aligned}
& E \rightarrow T+E \mid T \\
& T \rightarrow \text { int } \mid \text { int }{ }^{*} T \mid(E)
\end{aligned}
$$

- Hard to predict because
- For T, two productions start with int.
- For E, it is not clear how to predict.
- A grammar must be left-factored before use for predictive parsing.

Left-Factoring Example

- Recall the grammar

$$
\begin{aligned}
& E \rightarrow T+E \mid T \\
& T \rightarrow \text { int } \mid \text { int } * T \mid(E)
\end{aligned}
$$

- Factor out common prefixes of productions, possibly introducing ε-productions

$$
\begin{aligned}
& E \rightarrow T X \\
& X \rightarrow+E \mid \varepsilon \\
& T \rightarrow(E) \mid \operatorname{int} Y \\
& Y \rightarrow{ }^{*} T \mid \varepsilon
\end{aligned}
$$

LL(1) Parsing Table Example

- Left-factored grammar

$E \rightarrow T X$	$X \rightarrow+E \mid \varepsilon$
$T \rightarrow(E) \mid$ int Y	$Y \rightarrow * T \mid \varepsilon$

- The LL(1) parsing table:

	int	$*$	+	$($	$)$	$\$$
E	TX			TX		
X			+E		ε	ε
T	int Y			(E)		
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

LL(1) Parsing Table Example (Cont.)

- Consider the [$\mathrm{E}, \mathrm{int}]$ entry
- "When current non-terminal is E and next input is int, use production $E \rightarrow T X$.
- This production can generate an int in the first place.
- Consider the $[Y,+]$ entry
- "When current non-terminal is Y and current token is + , get rid of $Y^{\prime \prime}$.
- Y can be followed by + only in a derivation in which $\mathrm{Y} \rightarrow \varepsilon$.

LL(1) Parsing Tables. Errors

- Blank entries indicate error situations
- Consider the [$E,{ }^{*}$] entry
- "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

- Method similar to recursive descent, except
- For each non-terminal X
- We look at the next token \dagger
- And chose the production shown at $[X, \dagger]$
- We use a stack to keep track of pending nonterminals.
- We reject when we encounter an error state.
- We accept when we encounter end-of-input.

LL(1) Parsing Algorithm

```
initialize stack \(=\) <S \$> and next
repeat
    case stack of
        \(<X\), rest \(>\) : if \(T[X, *\) next \(]=Y_{1} \ldots Y_{n}\)
                            then stack \(\leftarrow<Y_{1} \ldots Y_{n}\), rest>;
                        else error ();
        <t, rest> : if \(t==\) *next ++
                            then stack \(\leftarrow\) <rest>;
                        else error ();
until stack \(==<>\)
```

LL(1) Parsing Example		
Stack	Input	Action
E \$	int * int \$	TX
TX \$	int * int \$	int Y
int $y \times$ \$	int * int \$	terminal
y \times \$	* int \$	* T
* TX \$	* int \$	terminal
TX \$	int \$	int Y
int $Y \times$ \$	int \$	terminal
y \times \$	\$	ε
X \$	\$	ε
\$	\$	ACCEPT
CS780(Prasa)	${ }_{\text {LiOTTPP }}$	${ }^{29}$

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm.
- No table entry can be multiply defined.
- We want to generate parsing tables from CFG.

Constructing Parsing Tables (Cont.)

- If $A \rightarrow \alpha$,
where in the line of A do we place α ?
- In the column of \dagger
where \dagger can start a string derived from α.
- $\alpha \rightarrow{ }^{*}+\beta$
- We say that $\dagger \in$ First (α).
- In the column of \dagger
if α is or derives ε and \dagger can follow an A.
- $S \rightarrow{ }^{*} \beta A+\delta$
- We say $\dagger \in \operatorname{Follow}(A)$.

Computing First Sets

Definition

$$
\text { First }(X)=\left\{\dagger \mid X \rightarrow^{*} \dagger \alpha\right\} \cup\left\{\varepsilon \mid X \rightarrow^{*} \varepsilon\right\}
$$

Algorithm sketch:

1. $\operatorname{First}(t)=\{t\}$
2. $\varepsilon \in \operatorname{First}(X)$ if $X \rightarrow \varepsilon$ is a production
3. $\varepsilon \in \operatorname{First}(X)$ if $X \rightarrow A_{1} \ldots A_{n}$

- and $\varepsilon \in \operatorname{First}\left(A_{i}\right)$ for $1 \leq i \leq n$

4. First $(\alpha)-\{\varepsilon\} \subseteq$ First (X) if $X \rightarrow A_{1} \ldots A_{n} \alpha$

- and $\varepsilon \in \operatorname{First}\left(A_{i}\right)$ for $1 \leq i \leq n$

First Sets. Example

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow * T \mid \varepsilon
\end{array}
$$

- First sets

First (() $=\{(\} \quad$ First ($T)=\{$ int, ($\}$
First()) $=\{$) $\} \quad$ First(E) $=\{$ int, ($\}$
First (int) $=\{$ int $\} \quad$ First $(X)=\{+, \varepsilon\}$
First (+) $=\{+\} \quad$ First $(Y)=\{*, \varepsilon\}$
First(*) $=\{$ * $\}$

Computing Follow Sets

- Definition:

$$
\text { Follow }(X)=\left\{\dagger \mid S \rightarrow^{*} \beta X \dagger \delta\right\}
$$

- Intuition
- If $X \rightarrow A B$ then First $(B) \subseteq \operatorname{Follow}(A)$ and Follow $(X) \subseteq$ Follow (B)
- Also if $B \rightarrow^{*} \varepsilon$ then Follow $(X) \subseteq$ Follow (A)
- If S is the start symbol then $\$ \in$ Follow(S)

Computing Follow Sets (Cont.)

Algorithm sketch:

1. $\$ \in$ Follow(S)
2. First $(\beta)-\{\varepsilon\} \subseteq$ Follow (X)

- For each production $A \rightarrow \alpha \times \beta$

3. Follow $(A) \subseteq$ Follow (X)

- For each production $A \rightarrow \alpha \times \beta$ where $\varepsilon \in \operatorname{First}(\beta)$

Follow Sets. Example

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow * T \mid \varepsilon
\end{array}
$$

- Follow sets

Follow(+) = \{int, ($\}$ Follow(*) $=\{$ int, ($\}$
Follow(() = \{int, ($\} \quad$ Follow(E) $=\{$), \$\}
Follow $(X)=\{\$)$,$\} \quad Follow (T)=\{+),, \$\}$
Follow()) $\{+$,) , \$\} Follow(Y) $=\{+$,), \$\}
Follow(int) $=\left\{{ }^{*},+\right.$,) , \$\}

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
- For each terminal $\dagger \in \operatorname{First}(\alpha)$ do - $T[A, \dagger]=\alpha$
- If $\varepsilon \in \operatorname{First}(\alpha)$, for each $t \in \operatorname{Follow}(A)$ do - $T[A, \dagger]=\alpha$
- If $\varepsilon \in \operatorname{First}(\alpha)$ and $\$ \in \operatorname{Follow}(A)$ do
- $T[A, \$]=\alpha$

