
1

CS780(Prasad) L12BUP 1

Introduction to Bottom-Up Parsing

Lecture Notes by
Profs. Alex Aiken and George Necula

(UCB)

CS780(Prasad) L12BUP 2

Outline

• The strategy: shift-reduce parsing

• A key concept: handles

• Ambiguity and precedence declarations

CS780(Prasad) L12BUP 3

Predictive Parsing Summary

• First and Follow sets are used to construct predictive
tables

– For non-terminal A and input t, use a production
A → α where t ∈ First(α)

– For non-terminal A and input t, if t ∈ Follow(α) and
ε ∈ First(A), use a production A → α where ε ∈

First(α)

CS780(Prasad) L12BUP 4

Bottom-Up Parsing

• Bottom-up parsing is more general than top-
down parsing.
– Don’t need left-factored grammars.
– Left recursion fine.
– Just as efficient.
– Builds on ideas in top-down parsing.

• Bottom-up parsing is the preferred method in
practice.

• Automatic parser generators: YACC, Bison, …

2

CS780(Prasad) L12BUP 5

An Introductory Example

• Revert to the “natural” grammar for our
example:

E → T + E | T
T → int * T | int | (E)

• Consider the string: int * int + int

CS780(Prasad) L12BUP 6

The Idea

Bottom-up parsing reduces a string to the start
symbol by inverting productions:

E
E → T + ET + E
E → TT + T
T → intT + int
T → int * Tint * T + int
T → intint * int + int

CS780(Prasad) L12BUP 7

Observation

• Read the sequence of productions in reverse
(from bottom to top)

• This is a rightmost derivation!

E
E → T + ET + E
E → TT + T
T → intT + int
T → int * Tint * T + int
T → intint * int + int

CS780(Prasad) L12BUP 8

Important Fact #1

Important Fact #1 about bottom-up parsing:

A bottom-up parser traces a rightmost
derivation in reverse.

LR-parser

3

CS780(Prasad) L12BUP 9

A Bottom-up Parse

E

T + E

T + T

T + int

int * T + int

int * int + int E

T E

+ int*int

T

int

T

CS780(Prasad) L12BUP 10

A Bottom-up Parse in Detail (1)

+ int*int int

int * int + int

CS780(Prasad) L12BUP 11

A Bottom-up Parse in Detail (2)

int * T + int

int * int + int

+ int*int int

T

CS780(Prasad) L12BUP 12

A Bottom-up Parse in Detail (3)

T + int

int * T + int

int * int + int

T

+ int*int int

T

4

CS780(Prasad) L12BUP 13

A Bottom-up Parse in Detail (4)

T + T

T + int

int * T + int

int * int + int

T

+ int*int

T

int

T

CS780(Prasad) L12BUP 14

A Bottom-up Parse in Detail (5)

T + E

T + T

T + int

int * T + int

int * int + int

T E

+ int*int

T

int

T

CS780(Prasad) L12BUP 15

A Bottom-up Parse in Detail (6)

E

T + E

T + T

T + int

int * T + int

int * int + int E

T E

+ int*int

T

int

T

CS780(Prasad) L12BUP 16

A Trivial Bottom-Up Parsing Algorithm

Let I = input string
repeat

pick a non-empty substring β of I
where X→ β is a production

if no such β, backtrack
replace one β by X in I

until I = “S” (the start symbol) or all
possibilities are exhausted

5

CS780(Prasad) L12BUP 17

Questions

• Does this algorithm terminate?

• How fast is the algorithm?

• Does the algorithm deal with all cases?

• How do we choose the substring to reduce at
each step?

CS780(Prasad) L12BUP 18

Where Do Reductions Happen

“Important Fact #1” has an interesting
consequence:
– Let αβω be a step of a bottom-up parse.
– Assume the next reduction is by X→ β.
– Then ω is a string of terminals.

Why? Because αXω → αβω is a step in a right-
most derivation.

CS780(Prasad) L12BUP 19

Notation

• Idea: Split string into two substrings.
– Right substring is as yet unexamined by parser

(hence is a string of terminals).
– Left substring has terminals and non-terminals.

• The dividing point is marked by a |
– The | is not part of the string.

• Initially, all input is unexamined. |x1x2 . . . xn

CS780(Prasad) L12BUP 20

Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions:

• Shift: Move | one place to the right.
– Shifts a terminal to the left string

ABC|xyz ⇒ ABCx|yz

• Reduce: Apply an inverse production at the
right end of the left string.
– If A → xy is a production, then

Cbxy|ijk ⇒ CbA|ijk

6

CS780(Prasad) L12BUP 21

The Example with Reductions Only

reduce T → intT + int |

E |
reduce E → T + ET + E |
reduce E → TT + T |

reduce T → int * Tint * T | + int
reduce T → intint * int | + int

22

The Example with Shift-Reduce Parsing

reduce T → intT + int |
shiftT + | int

shiftint | * int + int
shiftint * | int + int

shift|int * int + int

E |
reduce E → T + ET + E |
reduce E → TT + T |

shiftT | + int
reduce T → int * Tint * T | + int
reduce T → intint * int | + int

CS780(Prasad) L12BUP 23

A Shift-Reduce Parse in Detail (1)

+ int*int int
↑

|int * int + int

CS780(Prasad) L12BUP 24

A Shift-Reduce Parse in Detail (2)

+ int*int int
↑

int | * int + int
|int * int + int

7

CS780(Prasad) L12BUP 25

A Shift-Reduce Parse in Detail (3)

+ int*int int
↑

int | * int + int
int * | int + int

|int * int + int

CS780(Prasad) L12BUP 26

A Shift-Reduce Parse in Detail (4)

+ int*int int
↑

int | * int + int
int * | int + int

|int * int + int

int * int | + int

CS780(Prasad) L12BUP 27

A Shift-Reduce Parse in Detail (5)

+ int*int int

T

int | * int + int
int * | int + int

|int * int + int

int * T | + int
int * int | + int

↑

CS780(Prasad) L12BUP 28

A Shift-Reduce Parse in Detail (6)

T

+ int*int int

T

int | * int + int
int * | int + int

|int * int + int

T | + int
int * T | + int
int * int | + int

↑

8

CS780(Prasad) L12BUP 29

A Shift-Reduce Parse in Detail (7)

T

+ int*int int

TT + | int

int | * int + int
int * | int + int

|int * int + int

T | + int
int * T | + int
int * int | + int

↑

CS780(Prasad) L12BUP 30

A Shift-Reduce Parse in Detail (8)

T

+ int*int int

T
T + int |
T + | int

int | * int + int
int * | int + int

|int * int + int

T | + int
int * T | + int
int * int | + int

↑

CS780(Prasad) L12BUP 31

A Shift-Reduce Parse in Detail (9)

T

+ int*int

T

int

T
T + int |
T + | int

int | * int + int
int * | int + int

|int * int + int

T + T |

T | + int
int * T | + int
int * int | + int

↑

CS780(Prasad) L12BUP 32

A Shift-Reduce Parse in Detail (10)

T E

+ int*int

T

int

T
T + int |
T + | int

int | * int + int
int * | int + int

|int * int + int

T + E |
T + T |

T | + int
int * T | + int
int * int | + int

↑

9

L12BUP 33

A Shift-Reduce Parse in Detail (11)

E

T E

+ int*int

T

int

T
T + int |
T + | int

int | * int + int
int * | int + int

|int * int + int

E |
T + E |
T + T |

T | + int
int * T | + int
int * int | + int

↑

CS780(Prasad) L12BUP 34

The Stack

• Left string can be implemented by a stack
– Top of the stack is the |

• Shift pushes a terminal on the stack.

• Reduce pops 0 or more symbols off the stack
(production rhs) and pushes a non-terminal on
the stack (production lhs).

Shift-Reduce Parser

St
ac

k

Current Symbol

stack

Parser A
ction

Parser
Engine

CS780(Prasad) L12BUP 36

Key Issue

• How do we decide when to shift or reduce?

– Consider step int | * int + int
– We could reduce by T → int giving T | * int + int

– A fatal mistake: Because there is no way to reduce
to the start symbol E.

E → T + E | T
T → int * T | int | (E)

10

CS780(Prasad) L12BUP 37

Handles

• Intuition: Want to reduce only if the result
can still be reduced to the start symbol.

• Assume a rightmost derivation:
S =>* αXω → αβω

• Then αβ is a handle of αβω.

CS780(Prasad) L12BUP 38

Handles (Cont.)

• A handle is a string that can be reduced, and
that also allows further reductions back to
the start symbol.

• We only want to reduce at handles.

• Note: We have said what a handle is, not how
to find handles.

CS780(Prasad) L12BUP 39

Important Fact #2

Important Fact #2 about bottom-up parsing:

In shift-reduce parsing, handles appear only at
the top of the stack, never inside.

CS780(Prasad) L12BUP 40

Why?

• Informal induction on # of reduce moves:

• True initially, stack is empty

• Immediately after reducing a handle
– right-most non-terminal on top of the stack.
– next handle must be to right of right-most non-

terminal, because this is a right-most derivation.
– Sequence of shift moves reaches next handle.

11

CS780(Prasad) L12BUP 41

Summary of Handles

• In shift-reduce parsing, handles always appear
at the top of the stack.

• Handles are never to the left of the rightmost
non-terminal.
– Therefore, shift-reduce moves are sufficient; the |

need never move left.

• Bottom-up parsing algorithms are based on
recognizing handles.

CS780(Prasad) L12BUP 42

Conflicts

• Generic shift-reduce strategy:
– If there is a handle on top of the stack, reduce
– Otherwise, shift

• But what if there is a choice?
– If it is legal to shift or reduce, there is a shift-

reduce conflict.
– If it is legal to reduce by two different

productions, there is a reduce-reduce conflict.

CS780(Prasad) L12BUP 43

Source of Conflicts

• Ambiguous grammars always cause conflicts.
• But beware, so do many non-ambiguous

grammars.

Consider our favorite ambiguous grammar:

int|
(E)|
E * E|
E + E→E

CS780(Prasad) L12BUP 44

One Shift-Reduce Parse

E |
reduce E → E + EE + E |

.
reduce E → E * EE * E | + int

shift|int * int + int

reduce E → intE + int|
shiftE + | int
shiftE | + int

12

CS780(Prasad) L12BUP 45

Another Shift-Reduce Parse

E |
reduce E → E * EE * E |

.
shiftE * E | + int

shift|int * int + int

reduce E → E + EE * E + E|
reduce E → intE * E + int |
shiftE * E + | int

CS780(Prasad) L12BUP 46

Example Notes

• In the second step E * E | + int, we can either
shift or reduce by E → E * E.

• Choice determines associativity and
precedence of + and *.

• As noted previously, grammar can be rewritten
to enforce precedence.

• Precedence declarations are an alternative.

CS780(Prasad) L12BUP 47

Precedence Declarations Revisited

• Precedence declarations cause shift-reduce
parsers to resolve conflicts in certain ways.

• Declaring “* has greater precedence than +”
causes parser to reduce at E * E | + int .

• More precisely, precedence declaration is
used to resolve conflict between reducing a *
and shifting a +

